About the Project

generalized Bernoulli polynomials

AdvancedHelp

(0.004 seconds)

1—10 of 26 matching pages

1: 24.16 Generalizations
When x = 0 they reduce to the Bernoulli and Euler numbers of order :
B n ( ) = B n ( ) ( 0 ) ,
For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). …
24.16.6 n ! b n = 1 n 1 B n ( n 1 ) , n = 2 , 3 , .
B n ( x ) is a polynomial in x of degree n . …
2: 5.11 Asymptotic Expansions
5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , ,
5.11.17 G k ( a , b ) = ( a b k ) B k ( a b + 1 ) ( a ) ,
5.11.18 H k ( a , b ) = ( a b 2 k ) B 2 k ( a b + 1 ) ( a b + 1 2 ) .
3: Bibliography D
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • 4: Bibliography L
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • 5: Bibliography T
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • 6: 24.19 Methods of Computation
    §24.19(i) Bernoulli and Euler Numbers and Polynomials
    For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
    §24.19(ii) Values of B n Modulo p
    We list here three methods, arranged in increasing order of efficiency.
  • Tanner and Wagstaff (1987) derives a congruence ( mod p ) for Bernoulli numbers in terms of sums of powers. See also §24.10(iii).

  • 7: 24.17 Mathematical Applications
    §24.17 Mathematical Applications
    Bernoulli Monosplines
    §24.17(iii) Number Theory
    Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)).
    8: 18.2 General Orthogonal Polynomials
    §18.2 General Orthogonal Polynomials
    Orthogonality on General Sets
    Discriminants
    9: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • P. A. Clarkson and K. Jordaan (2018) Properties of generalized Freud polynomials. J. Approx. Theory 225, pp. 148–175.
  • H. S. Cohl (2013b) On a generalization of the generating function for Gegenbauer polynomials. Integral Transforms Spec. Funct. 24 (10), pp. 807–816.
  • 10: Bibliography B
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • C. Brezinski (1980) Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, Basel.
  • J. Brillhart (1969) On the Euler and Bernoulli polynomials. J. Reine Angew. Math. 234, pp. 45–64.
  • T. Burić and N. Elezović (2011) Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions. J. Comput. Appl. Math. 235 (11), pp. 3315–3331.
  • P. L. Butzer, M. Hauss, and M. Leclerc (1992) Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (6), pp. 83–88.