About the Project

general bases

AdvancedHelp

(0.004 seconds)

1—10 of 165 matching pages

1: 4.2 Definitions
§4.2(ii) Logarithms to a General Base a
4.2.9 log a z = log b z log b a ,
4.2.10 log a b = 1 log b a .
4.2.16 ln z = ( ln 10 ) log 10 z ,
Powers with General Bases
2: 4.12 Generalized Logarithms and Exponentials
4.12.1 ϕ ( x + 1 ) = e ϕ ( x ) , 1 < x < ,
4.12.3 ψ ( e x ) = 1 + ψ ( x ) , < x < ,
4.12.8 ψ ( x ) = e x 1 , < x < 0 ,
3: 8.7 Series Expansions
8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
4: 3.1 Arithmetics and Error Measures
To eliminate overflow or underflow in finite-precision arithmetic numbers are represented by using generalized logarithms ln ( x ) given by …
5: 22 Jacobian Elliptic Functions
6: 23 Weierstrass Elliptic and Modular
Functions
7: 18.39 Applications in the Physical Sciences
18.39.29 ψ p , l ( r ) = Z p ! ( p + 2 l + 1 ) ! e ρ p / 2 ρ p l + 1 p + l + 1 L p ( 2 l + 1 ) ( ρ p ) , p = 0 , 1 , 2 , ; l = 0 , 1 , 2 , ,
18.39.34 ψ n , l ( r ) = 1 n Z ( n l 1 ) ! ( n + l ) ! e ρ n / 2 ρ n l + 1 L n l 1 ( 2 l + 1 ) ( ρ n ) , n = 1 , 2 , , l = 0 , 1 , n 1 ,
18.39.37 R n , l ( r ) = 2 n 2 Z 3 ( n l 1 ) ! ( n + l ) ! e ρ n / 2 ρ n l L n l 1 ( 2 l + 1 ) ( ρ n ) ,
18.39.44 ϕ n , l ( s r ) = ( s r ) l + 1 e s r / 2 L n ( 2 l + 1 ) ( s r ) , n = 0 , 1 , 2 , ,
8: 8.19 Generalized Exponential Integral
8.19.2 E p ( z ) = z p 1 z e t t p d t .
8.19.5 E 0 ( z ) = z 1 e z , z 0 ,
8.19.12 p E p + 1 ( z ) + z E p ( z ) = e z .
8.19.21 1 x + n < e x E n ( x ) 1 x + n 1 ,
9: 8.20 Asymptotic Expansions of E p ( z )
8.20.1 E p ( z ) = e z z ( k = 0 n 1 ( 1 ) k ( p ) k z k + ( 1 ) n ( p ) n e z z n 1 E n + p ( z ) ) , n = 1 , 2 , 3 , .
8.20.3 E p ( z ) ± 2 π i Γ ( p ) e p π i z p 1 + e z z k = 0 ( 1 ) k ( p ) k z k , 1 2 π + δ ± ph z 7 2 π δ ,
8.20.6 E p ( λ p ) e λ p ( λ + 1 ) p k = 0 A k ( λ ) ( λ + 1 ) 2 k 1 p k ,
10: 33.14 Definitions and Basic Properties
33.14.14 ϕ n , ( r ) = ( 1 ) + 1 + n ( 2 / n 3 ) 1 / 2 s ( 1 / n 2 , ; r ) = ( 1 ) + 1 + n n + 2 ( ( n 1 ) ! ( n + ) ! ) 1 / 2 ( 2 r ) + 1 e r / n L n 1 ( 2 + 1 ) ( 2 r / n )