About the Project

gamma function

AdvancedHelp

(0.018 seconds)

21—30 of 355 matching pages

21: 5.6 Inequalities
§5.6 Inequalities
5.6.2 1 Γ ( x ) + 1 Γ ( 1 / x ) 2 ,
5.6.3 1 ( Γ ( x ) ) 2 + 1 ( Γ ( 1 / x ) ) 2 2 ,
5.6.6 | Γ ( x + i y ) | | Γ ( x ) | ,
5.6.8 | Γ ( z + a ) Γ ( z + b ) | 1 | z | b a .
22: 5.23 Approximations
§5.23(i) Rational Approximations
§5.23(ii) Expansions in Chebyshev Series
§5.23(iii) Approximations in the Complex Plane
See Schmelzer and Trefethen (2007) for a survey of rational approximations to various scaled versions of Γ ( z ) . …
23: 8.9 Continued Fractions
§8.9 Continued Fractions
8.9.1 Γ ( a + 1 ) e z γ ( a , z ) = 1 1 z a + 1 + z a + 2 ( a + 1 ) z a + 3 + 2 z a + 4 ( a + 2 ) z a + 5 + 3 z a + 6 , a 1 , 2 , ,
8.9.2 z a e z Γ ( a , z ) = z 1 1 + ( 1 a ) z 1 1 + z 1 1 + ( 2 a ) z 1 1 + 2 z 1 1 + ( 3 a ) z 1 1 + 3 z 1 1 + , | ph z | < π .
24: 8.6 Integral Representations
§8.6(i) Integrals Along the Real Line
§8.6(ii) Contour Integrals
Mellin–Barnes Integrals
§8.6(iii) Compendia
25: 8.27 Approximations
§8.27(i) Incomplete Gamma Functions
  • DiDonato (1978) gives a simple approximation for the function F ( p , x ) = x p e x 2 / 2 x e t 2 / 2 t p d t (which is related to the incomplete gamma function by a change of variables) for real p and large positive x . This takes the form F ( p , x ) = 4 x / h ( p , x ) , approximately, where h ( p , x ) = 3 ( x 2 p ) + ( x 2 p ) 2 + 8 ( x 2 + p ) and is shown to produce an absolute error O ( x 7 ) as x .

  • Luke (1969b, pp. 25, 40–41) gives Chebyshev-series expansions for Γ ( a , ω z ) (by specifying parameters) with 1 ω < , and γ ( a , ω z ) with 0 ω 1 ; see also Temme (1994b, §3).

  • 26: 5.8 Infinite Products
    §5.8 Infinite Products
    5.8.1 Γ ( z ) = lim k k ! k z z ( z + 1 ) ( z + k ) , z 0 , 1 , 2 , ,
    5.8.2 1 Γ ( z ) = z e γ z k = 1 ( 1 + z k ) e z / k ,
    5.8.3 | Γ ( x ) Γ ( x + i y ) | 2 = k = 0 ( 1 + y 2 ( x + k ) 2 ) , x 0 , 1 , .
    5.8.5 k = 0 ( a 1 + k ) ( a 2 + k ) ( a m + k ) ( b 1 + k ) ( b 2 + k ) ( b m + k ) = Γ ( b 1 ) Γ ( b 2 ) Γ ( b m ) Γ ( a 1 ) Γ ( a 2 ) Γ ( a m ) ,
    27: 5.18 q -Gamma and q -Beta Functions
    §5.18 q -Gamma and q -Beta Functions
    §5.18(ii) q -Gamma Function
    Also, ln Γ q ( x ) is convex for x > 0 , and the analog of the Bohr–Mollerup theorem (§5.5(iv)) holds. …
    5.18.10 lim q 1 Γ q ( z ) = Γ ( z ) .
    For the q -digamma or q -psi function ψ q ( z ) = Γ q ( z ) / Γ q ( z ) see Salem (2013). …
    28: 5.19 Mathematical Applications
    §5.19 Mathematical Applications
    5.19.3 S = ψ ( 1 2 ) 2 ψ ( 2 3 ) γ = 3 ln 3 2 ln 2 1 3 π 3 .
    Many special functions f ( z ) can be represented as a Mellin–Barnes integral, that is, an integral of a product of gamma functions, reciprocals of gamma functions, and a power of z , the integration contour being doubly-infinite and eventually parallel to the imaginary axis at both ends. …
    §5.19(iii) n -Dimensional Sphere
    29: 8.4 Special Values
    §8.4 Special Values
    8.4.2 γ ( a , 0 ) = 1 Γ ( a + 1 ) ,
    8.4.5 Γ ( 1 , z ) = e z ,
    8.4.9 P ( n + 1 , z ) = 1 e z e n ( z ) ,
    8.4.12 γ ( n , z ) = z n ,
    30: 8.5 Confluent Hypergeometric Representations
    §8.5 Confluent Hypergeometric Representations
    8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
    8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
    8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
    8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .