About the Project

fundamental%20theorem%20of%20arithmetic

AdvancedHelp

(0.003 seconds)

1—10 of 238 matching pages

1: 19.8 Quadratic Transformations
§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM)
As n , a n and g n converge to a common limit M ( a 0 , g 0 ) called the AGM (Arithmetic-Geometric Mean) of a 0 and g 0 . …showing that the convergence of c n to 0 and of a n and g n to M ( a 0 , g 0 ) is quadratic in each case. … Again, p n and ε n converge quadratically to M ( a 0 , g 0 ) and 0, respectively, and Q n converges to 0 faster than quadratically. …
2: 27.2 Functions
§27.2(i) Definitions
Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … If ( a , n ) = 1 , then the Euler–Fermat theorem states that …
3: 27.15 Chinese Remainder Theorem
§27.15 Chinese Remainder Theorem
This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
4: 20 Theta Functions
Chapter 20 Theta Functions
5: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • D. E. Knuth (1968) The Art of Computer Programming. Vol. 1: Fundamental Algorithms. 1st edition, Addison-Wesley Publishing Co., Reading, MA-London-Don Mills, Ont.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 6: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • P. J. Mohr and B. N. Taylor (2005) CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod.Phys. 77, pp. 1–107.
  • 7: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • K. Gottfried and T. Yan (2004) Quantum mechanics: fundamentals. Second edition, Springer-Verlag, New York.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 8: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 9: Bibliography C
  • L. Carlitz (1961b) The Staudt-Clausen theorem. Math. Mag. 34, pp. 131–146.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 10: Peter L. Walker
    Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …