About the Project

fundamental%20solutions

AdvancedHelp

(0.003 seconds)

7 matching pages

1: Bibliography V
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 2: 10.73 Physical Applications
    and on separation of variables we obtain solutions of the form e ± i n ϕ e ± κ z J n ( κ r ) , from which a solution satisfying prescribed boundary conditions may be constructed. … It is fundamental in the study of electromagnetic wave transmission. …See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …In quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
    3: Bibliography C
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 4: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • P. J. Mohr and B. N. Taylor (2005) CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod.Phys. 77, pp. 1–107.
  • 5: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • D. E. Knuth (1968) The Art of Computer Programming. Vol. 1: Fundamental Algorithms. 1st edition, Addison-Wesley Publishing Co., Reading, MA-London-Don Mills, Ont.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 6: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • K. Gottfried and T. Yan (2004) Quantum mechanics: fundamentals. Second edition, Springer-Verlag, New York.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 7: 15.10 Hypergeometric Differential Equation
    §15.10(i) Fundamental Solutions
    When none of the exponent pairs differ by an integer, that is, when none of c , c a b , a b is an integer, we have the following pairs f 1 ( z ) , f 2 ( z ) of fundamental solutions. … The three pairs of fundamental solutions given by (15.10.2), (15.10.4), and (15.10.6) can be transformed into 18 other solutions by means of (15.8.1), leading to a total of 24 solutions known as Kummer’s solutions. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …