# fundamental parallelogram

(0.002 seconds)

## 1—10 of 35 matching pages

##### 1: 20.2 Definitions and Periodic Properties
The four points $(0,\pi,\pi+\tau\pi,\tau\pi)$ are the vertices of the fundamental parallelogram in the $z$-plane; see Figure 20.2.1. …
##### 2: Howard S. Cohl
Cohl has published papers in orthogonal polynomials and special functions, and is particularly interested in fundamental solutions of linear partial differential equations on Riemannian manifolds, associated Legendre functions, generalized and basic hypergeometric functions, eigenfunction expansions of fundamental solutions in separable coordinate systems for linear partial differential equations, orthogonal polynomial generating function and generalized expansions, and $q$-series. …
##### 3: Leonard C. Maximon
Maximon published numerous papers on the fundamental processes of quantum electrodynamics and on the special functions of mathematical physics. …
##### 4: 28.29 Definitions and Basic Properties
28.29.4 $w_{\mbox{\tiny I}}(z+\pi,\lambda)=w_{\mbox{\tiny I}}(\pi,\lambda)w_{\mbox{% \tiny I}}(z,\lambda)+w^{\prime}_{\mbox{\tiny I}}(\pi,\lambda)w_{\mbox{\tiny II% }}(z,\lambda),$
28.29.5 $w_{\mbox{\tiny II}}(z+\pi,\lambda)=w_{\mbox{\tiny II}}(\pi,\lambda)w_{\mbox{% \tiny I}}(z,\lambda)+w^{\prime}_{\mbox{\tiny II}}(\pi,\lambda)w_{\mbox{\tiny II% }}(z,\lambda).$
28.29.8 $\begin{bmatrix}w_{\mbox{\tiny I}}(\pi,\lambda)&w_{\mbox{\tiny II}}(\pi,\lambda% )\\ w^{\prime}_{\mbox{\tiny I}}(\pi,\lambda)&w^{\prime}_{\mbox{\tiny II}}(\pi,% \lambda)\end{bmatrix}.$
If $\nu$ $(\neq 0,1)$ is a solution of (28.29.9), then $F_{\nu}(z)$, $F_{-\nu}(z)$ comprise a fundamental pair of solutions of Hill’s equation. …
28.29.15 $\bigtriangleup(\lambda)=w_{\mbox{\tiny I}}(\pi,\lambda)+w_{\mbox{\tiny II}}^{% \prime}(\pi,\lambda)$
##### 5: 23.5 Special Lattices
Then $\Delta>0$ and the parallelogram with vertices at $0$, $2\omega_{1}$, $2\omega_{1}+2\omega_{3}$, $2\omega_{3}$ is a rectangle. … The parallelogram $0$, $2\omega_{1}$, $2\omega_{1}+2\omega_{3}$, $2\omega_{3}$ is a square, and … The parallelogram $0$, $2\omega_{1}-2\omega_{3}$, $2\omega_{1}$, $2\omega_{3}$, is a rhombus: see Figure 23.5.1. …
##### 6: 28.2 Definitions and Basic Properties
(28.2.1) possesses a fundamental pair of solutions $w_{\mbox{\tiny I}}(z;a,q),w_{\mbox{\tiny II}}(z;a,q)$ called basic solutions with
28.2.5 $\begin{bmatrix}w_{\mbox{\tiny I}}(0;a,q)&w_{\mbox{\tiny II}}(0;a,q)\\ w^{\prime}_{\mbox{\tiny I}}(0;a,q)&w^{\prime}_{\mbox{\tiny II}}(0;a,q)\end{% bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix}.$
28.2.6 $\mathscr{W}\left\{w_{\mbox{\tiny I}},w_{\mbox{\tiny II}}\right\}=1,$
28.2.7 $w_{\mbox{\tiny I}}(z\pm\pi;a,q)=w_{\mbox{\tiny I}}(\pi;a,q)w_{\mbox{\tiny I}}(% z;a,q)\pm w^{\prime}_{\mbox{\tiny I}}(\pi;a,q)w_{\mbox{\tiny II}}(z;a,q),$
28.2.8 $w_{\mbox{\tiny II}}(z\pm\pi;a,q)=\pm w_{\mbox{\tiny II}}(\pi;a,q)w_{\mbox{% \tiny I}}(z;a,q)+w^{\prime}_{\mbox{\tiny II}}(\pi;a,q)w_{\mbox{\tiny II}}(z;a,% q),$
##### 7: 3.12 Mathematical Constants
The fundamental constant …
##### 8: 8.24 Physical Applications
With more general values of $p$, $E_{p}\left(x\right)$ supplies fundamental auxiliary functions that are used in the computation of molecular electronic integrals in quantum chemistry (Harris (2002), Shavitt (1963)), and also wave acoustics of overlapping sound beams (Ding (2000)).
##### 9: 16.21 Differential Equation
A fundamental set of solutions of (16.21.1) is given by …For other fundamental sets see Erdélyi et al. (1953a, §5.4) and Marichev (1984).
##### 10: 1.13 Differential Equations
###### Fundamental Pair
Two solutions $w_{1}(z)$ and $w_{2}(z)$ are called a fundamental pair if any other solution $w(z)$ is expressible as …A fundamental pair can be obtained, for example, by taking any $z_{0}\in D$ and requiring that … The following three statements are equivalent: $w_{1}(z)$ and $w_{2}(z)$ comprise a fundamental pair in $D$; $\mathscr{W}\left\{w_{1}(z),w_{2}(z)\right\}$ does not vanish in $D$; $w_{1}(z)$ and $w_{2}(z)$ are linearly independent, that is, the only constants $A$ and $B$ such that … If $w_{0}(z)$ is any one solution, and $w_{1}(z)$, $w_{2}(z)$ are a fundamental pair of solutions of the corresponding homogeneous equation (1.13.1), then every solution of (1.13.8) can be expressed as …