About the Project

functions%20F%E2%84%93%28%CE%B7%2C%CF%81%29%2CG%E2%84%93%28%CE%B7%2C%CF%81%29%2CH%C2%B1%E2%84%93%28%CE%B7%2C%CF%81%29

AdvancedHelp

(0.038 seconds)

1—10 of 995 matching pages

1: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss seriesThe principal branch of 𝐅 ( a , b ; c ; z ) is an entire function of a , b , and c . …The same properties hold for F ( a , b ; c ; z ) , except that as a function of c , F ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . … For example, when a = m , m = 0 , 1 , 2 , , and c 0 , 1 , 2 , , F ( a , b ; c ; z ) is a polynomial: …
2: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 ,
3: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
§14.19(ii) Hypergeometric Representations
§14.19(iv) Sums
§14.19(v) Whipple’s Formula for Toroidal Functions
4: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
5: 23.15 Definitions
§23.15 Definitions
§23.15(i) General Modular Functions
Elliptic Modular Function
Dedekind’s Eta Function (or Dedekind Modular Function)
6: 5.15 Polygamma Functions
§5.15 Polygamma Functions
The functions ψ ( n ) ( z ) , n = 1 , 2 , , are called the polygamma functions. In particular, ψ ( z ) is the trigamma function; ψ ′′ , ψ ( 3 ) , ψ ( 4 ) are the tetra-, penta-, and hexagamma functions respectively. Most properties of these functions follow straightforwardly by differentiation of properties of the psi function. … For B 2 k see §24.2(i). …
7: 5.2 Definitions
§5.2(i) Gamma and Psi Functions
Euler’s Integral
It is a meromorphic function with no zeros, and with simple poles of residue ( 1 ) n / n ! at z = n . …
5.2.2 ψ ( z ) = Γ ( z ) / Γ ( z ) , z 0 , 1 , 2 , .
5.2.3 γ = lim n ( 1 + 1 2 + 1 3 + + 1 n ln n ) = 0.57721 56649 01532 86060 .
8: 9.12 Scorer Functions
§9.12 Scorer Functions
where …
§9.12(ii) Graphs
Functions and Derivatives
9: 11.9 Lommel Functions
§11.9 Lommel Functions
Reflection Formulas
§11.9(ii) Expansions in Series of Bessel Functions
10: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
§20.2(ii) Periodicity and Quasi-Periodicity
The theta functions are quasi-periodic on the lattice: …
§20.2(iii) Translation of the Argument by Half-Periods
§20.2(iv) z -Zeros