About the Project

fractional transformations

AdvancedHelp

(0.003 seconds)

11—20 of 32 matching pages

11: 19.13 Integrals of Elliptic Integrals
Cvijović and Klinowski (1994) contains fractional integrals (with free parameters) for F ( ϕ , k ) and E ( ϕ , k ) , together with special cases.
§19.13(iii) Laplace Transforms
For direct and inverse Laplace transforms for the complete elliptic integrals K ( k ) , E ( k ) , and D ( k ) see Prudnikov et al. (1992a, §3.31) and Prudnikov et al. (1992b, §§3.29 and 4.3.33), respectively.
12: Errata
The specific updates to Chapter 18 include some results for general orthogonal polynomials including quadratic transformations, uniqueness of orthogonality measure and completeness, moments, continued fractions, and some special classes of orthogonal polynomials. …
13: Bibliography M
  • J. P. McClure and R. Wong (1979) Exact remainders for asymptotic expansions of fractional integrals. J. Inst. Math. Appl. 24 (2), pp. 139–147.
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • C. Mortici (2011a) A new Stirling series as continued fraction. Numer. Algorithms 56 (1), pp. 17–26.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 14: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis (1997) A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • A. J. Stone and C. P. Wood (1980) Root-rational-fraction package for exact calculation of vector-coupling coefficients. Comput. Phys. Comm. 21 (2), pp. 195–205.
  • 15: 18.17 Integrals
    §18.17(iv) Fractional Integrals
    Jacobi
    Laguerre
    §18.17(v) Fourier Transforms
    §18.17(vi) Laplace Transforms
    16: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • L. Lorentzen and H. Waadeland (1992) Continued Fractions with Applications. Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • 17: 15.9 Relations to Other Functions
    The Jacobi transform is defined as …with inverse … … Any hypergeometric function for which a quadratic transformation exists can be expressed in terms of associated Legendre functions or Ferrers functions. … The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
    18: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • 19: 16.4 Argument Unity
    §16.4(iii) Identities
    The basic transformation is given by … A different type of transformation is that of Whipple: …
    §16.4(iv) Continued Fractions
    For continued fractions for ratios of F 2 3 functions with argument unity, see Cuyt et al. (2008, pp. 315–317). …
    20: 10.43 Integrals
    §10.43(iii) Fractional Integrals
    §10.43(iv) Integrals over the Interval ( 0 , )
    §10.43(v) Kontorovich–Lebedev Transform
    The Kontorovich–Lebedev transform of a function g ( x ) is defined as … For asymptotic expansions of the direct transform (10.43.30) see Wong (1981), and for asymptotic expansions of the inverse transform (10.43.31) see Naylor (1990, 1996). …