About the Project

fractional or multiple

AdvancedHelp

(0.001 seconds)

11—20 of 178 matching pages

11: 6.9 Continued Fraction
§6.9 Continued Fraction
12: 18.13 Continued Fractions
§18.13 Continued Fractions
Chebyshev
Legendre
Laguerre
Hermite
13: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
18.29.1 ( b c , b d , c d ; q ) n ( Q n ( e i θ ; a , b , c , d q ) + Q n ( e i θ ; a , b , c , d q ) ) ,
18.29.2 Q n ( z ; a , b , c , d q ) z n ( a z 1 , b z 1 , c z 1 , d z 1 ; q ) ( z 2 , b c , b d , c d ; q ) , n ; z , a , b , c , d , q fixed.
14: 13.5 Continued Fractions
§13.5 Continued Fractions
13.5.1 M ( a , b , z ) M ( a + 1 , b + 1 , z ) = 1 + u 1 z 1 + u 2 z 1 + ,
This continued fraction converges to the meromorphic function of z on the left-hand side everywhere in . For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980). … This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector | ph z | < π . …
15: 1.12 Continued Fractions
§1.12 Continued Fractions
Equivalence
Series
Fractional Transformations
16: 10.23 Sums
§10.23(i) Multiplication Theorem
Partial Fractions
For expansions of products of Bessel functions of the first kind in partial fractions see Rogers (2005). …
17: 1.10 Functions of a Complex Variable
If n is the first negative integer (counting from ) with a n 0 , then z 0 is a pole of order (or multiplicity) n . … each location again being counted with multiplicity equal to that of the corresponding zero or pole. …
§1.10(x) Infinite Partial Fractions
Mittag-Leffler’s Expansion
18: 13.17 Continued Fractions
§13.17 Continued Fractions
13.17.1 z M κ , μ ( z ) M κ 1 2 , μ + 1 2 ( z ) = 1 + u 1 z 1 + u 2 z 1 + ,
This continued fraction converges to the meromorphic function of z on the left-hand side for all z . For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980). … This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector | ph z | < π . …
19: 17.10 Transformations of ψ r r Functions
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.2 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , b z , c q / ( a b z ) , d q / ( a b z ) ; q ) ( q / a , q / b , c , d ; q ) ψ 2 2 ( a b z / c , a b z / d a z , b z ; q , c d a b z ) .
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
17.10.4 ψ 2 2 ( e , f a q / c , a q / d ; q , a q e f ) = ( q / c , q / d , a q / e , a q / f ; q ) ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n = ( 1 a q 2 n ) ( c , d , e , f ; q ) n ( 1 a ) ( a q / c , a q / d , a q / e , a q / f ; q ) n ( q a 3 c d e f ) n q n 2 .
17.10.5 ( a q / b , a q / c , a q / d , a q / e , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) ; q ) ( f a , g a , f / a , g / a , q a 2 , q / a 2 ; q ) ψ 8 8 ( q a , q a , b a , c a , d a , e a , f a , g a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g ; q , q 2 b c d e f g ) = ( q , q / ( b f ) , q / ( c f ) , q / ( d f ) , q / ( e f ) , q f / b , q f / c , q f / d , q f / e ; q ) ( f a , q / ( f a ) , a q / f , f / a , g / f , f g , q f 2 ; q ) ϕ 7 8 ( f 2 , q f , q f , f b , f c , f d , f e , f g f , f , f q / b , f q / c , f q / d , f q / e , f q / g ; q , q 2 b c d e f g ) + idem ( f ; g ) .
20: 1.2 Elementary Algebra
§1.2(iii) Partial Fractions
Multiplication by a scalar is given by …
Multiplication of Matrices
Assuming the indicated multiplications are defined: matrix multiplication is associativeThe sum of all multiplicities is n . …