About the Project

formula for Stokes set

AdvancedHelp

(0.002 seconds)

6 matching pages

1: 36.5 Stokes Sets
§36.5(ii) Cuspoids
§36.5(iii) Umbilics
2: 2.7 Differential Equations
Typical connection formulas are …in which C 1 , C 2 are constants, the so-called Stokes multipliers. In combination with (2.7.14) these formulas yield asymptotic expansions for w 1 ( z ) in 1 2 π + δ ph ( ( λ 2 λ 1 ) z ) 5 2 π δ , and w 2 ( z ) in 3 2 π + δ ph ( ( λ 2 λ 1 ) z ) 1 2 π δ . … For the calculation of Stokes multipliers see Olde Daalhuis and Olver (1995b). … Instead set f = x + ln x , g = 0 . …
3: Bibliography W
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • J. Wimp (1985) Some explicit Padé approximants for the function Φ / Φ and a related quadrature formula involving Bessel functions. SIAM J. Math. Anal. 16 (4), pp. 887–895.
  • R. Wong and Y.-Q. Zhao (1999a) Smoothing of Stokes’s discontinuity for the generalized Bessel function. II. Proc. Roy. Soc. London Ser. A 455, pp. 3065–3084.
  • R. Wong and Y.-Q. Zhao (1999b) Smoothing of Stokes’s discontinuity for the generalized Bessel function. Proc. Roy. Soc. London Ser. A 455, pp. 1381–1400.
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 4: Bibliography S
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • R. Spira (1971) Calculation of the gamma function by Stirling’s formula. Math. Comp. 25 (114), pp. 317–322.
  • K. Srinivasa Rao (1981) Computation of angular momentum coefficients using sets of generalized hypergeometric functions. Comput. Phys. Comm. 22 (2-3), pp. 297–302.
  • A. N. Stokes (1980) A stable quotient-difference algorithm. Math. Comp. 34 (150), pp. 515–519.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 5: Bibliography H
  • A. J. S. Hamilton (2001) Formulae for growth factors in expanding universes containing matter and a cosmological constant. Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • K. Horata (1989) An explicit formula for Bernoulli numbers. Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • C. J. Howls, P. J. Langman, and A. B. Olde Daalhuis (2004) On the higher-order Stokes phenomenon. Proc. Roy. Soc. London Ser. A 460, pp. 2285–2303.
  • 6: Bibliography D
  • A. R. DiDonato (1978) An approximation for χ e t 2 / 2 t p 𝑑 t , χ > 0 , p real. Math. Comp. 32 (141), pp. 271–275.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • T. M. Dunster (1996b) Asymptotics of the generalized exponential integral, and error bounds in the uniform asymptotic smoothing of its Stokes discontinuities. Proc. Roy. Soc. London Ser. A 452, pp. 1351–1367.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.