About the Project

for ratios

AdvancedHelp

(0.002 seconds)

21—30 of 415 matching pages

21: 4.8 Identities
4.8.2 ln ( z 1 z 2 ) = ln z 1 + ln z 2 , π ph z 1 + ph z 2 π ,
4.8.7 ln 1 z = ln z , | ph z | π .
4.8.15 a z b z = ( a b ) z , π ph a + ph b π ,
22: 7.2 Definitions
7.2.1 erf z = 2 π 0 z e t 2 d t ,
7.2.2 erfc z = 2 π z e t 2 d t = 1 erf z ,
7.2.6 ( z ) = z e 1 2 π i t 2 d t ,
7.2.7 C ( z ) = 0 z cos ( 1 2 π t 2 ) d t ,
7.2.8 S ( z ) = 0 z sin ( 1 2 π t 2 ) d t ,
23: 7.6 Series Expansions
7.6.1 erf z = 2 π n = 0 ( 1 ) n z 2 n + 1 n ! ( 2 n + 1 ) ,
7.6.2 erf z = 2 π e z 2 n = 0 2 n z 2 n + 1 1 3 ( 2 n + 1 ) ,
7.6.4 C ( z ) = n = 0 ( 1 ) n ( 1 2 π ) 2 n ( 2 n ) ! ( 4 n + 1 ) z 4 n + 1 ,
7.6.6 S ( z ) = n = 0 ( 1 ) n ( 1 2 π ) 2 n + 1 ( 2 n + 1 ) ! ( 4 n + 3 ) z 4 n + 3 ,
7.6.10 C ( z ) = z n = 0 𝗃 2 n ( 1 2 π z 2 ) ,
24: 25.4 Reflection Formulas
25.4.1 ζ ( 1 s ) = 2 ( 2 π ) s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
25.4.2 ζ ( s ) = 2 ( 2 π ) s 1 sin ( 1 2 π s ) Γ ( 1 s ) ζ ( 1 s ) .
25.4.4 ξ ( s ) = 1 2 s ( s 1 ) Γ ( 1 2 s ) π s / 2 ζ ( s ) .
25.4.5 ( 1 ) k ζ ( k ) ( 1 s ) = 2 ( 2 π ) s m = 0 k r = 0 m ( k m ) ( m r ) ( ( c k m ) cos ( 1 2 π s ) + ( c k m ) sin ( 1 2 π s ) ) Γ ( r ) ( s ) ζ ( m r ) ( s ) ,
25.4.6 c ln ( 2 π ) 1 2 π i .
25: 7.5 Interrelations
7.5.1 F ( z ) = 1 2 i π ( e z 2 w ( z ) ) = 1 2 i π e z 2 erf ( i z ) .
7.5.3 C ( z ) = 1 2 + f ( z ) sin ( 1 2 π z 2 ) g ( z ) cos ( 1 2 π z 2 ) ,
7.5.7 ζ = 1 2 π ( 1 i ) z ,
7.5.13 G ( x ) = π F ( x ) 1 2 e x 2 Ei ( x 2 ) , x > 0 .
26: 11.4 Basic Properties
11.4.5 𝐇 1 2 ( z ) = ( 2 π z ) 1 2 ( 1 cos z ) ,
11.4.6 𝐇 1 2 ( z ) = ( 2 π z ) 1 2 sin z ,
11.4.7 𝐋 1 2 ( z ) = ( 2 π z ) 1 2 ( cosh z 1 ) ,
11.4.10 𝐇 3 2 ( z ) = ( 2 π z ) 1 2 ( cos z sin z z ) ,
27: 22.11 Fourier and Hyperbolic Series
22.11.1 sn ( z , k ) = 2 π K k n = 0 q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.2 cn ( z , k ) = 2 π K k n = 0 q n + 1 2 cos ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
22.11.4 cd ( z , k ) = 2 π K k n = 0 ( 1 ) n q n + 1 2 cos ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.5 sd ( z , k ) = 2 π K k k n = 0 ( 1 ) n q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
28: 10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.4 K ν ( z e m π i ) = csc ( ν π ) ( ± sin ( m ν π ) K ν ( z e ± π i ) sin ( ( m 1 ) ν π ) K ν ( z ) ) .
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
10.34.6 K n ( z e m π i ) = ± ( 1 ) n ( m 1 ) m K n ( z e ± π i ) ( 1 ) n m ( m 1 ) K n ( z ) .
29: 11.7 Integrals and Sums
11.7.2 z ν 𝐇 ν + 1 ( z ) d z = z ν 𝐇 ν ( z ) + 2 ν z π Γ ( ν + 3 2 ) ,
11.7.4 z ν 𝐋 ν + 1 ( z ) d z = z ν 𝐋 ν ( z ) 2 ν z π Γ ( ν + 3 2 ) .
11.7.6 f ν + 1 ( z ) = ( 2 ν + 1 ) f ν ( z ) z ν + 1 𝐇 ν ( z ) + ( 1 2 z 2 ) ν + 1 ( ν + 1 ) π Γ ( ν + 3 2 ) , ν > 1 .
11.7.9 0 𝐇 ν ( t ) d t = cot ( 1 2 π ν ) , 2 < ν < 0 ,
11.7.10 0 t ν 1 𝐇 ν ( t ) d t = π 2 ν + 1 Γ ( ν + 1 ) , ν > 3 2 ,
30: 20.3 Graphics