About the Project

for modified Bessel functions

AdvancedHelp

(0.024 seconds)

11—20 of 118 matching pages

11: 10.33 Continued Fractions
§10.33 Continued Fractions
10.33.1 I ν ( z ) I ν 1 ( z ) = 1 2 ν z 1 + 1 2 ( ν + 1 ) z 1 + 1 2 ( ν + 2 ) z 1 + , z 0 ,
10.33.2 I ν ( z ) I ν 1 ( z ) = 1 2 z / ν 1 + 1 4 z 2 / ( ν ( ν + 1 ) ) 1 + 1 4 z 2 / ( ( ν + 1 ) ( ν + 2 ) ) 1 + , ν 0 , 1 , 2 , .
12: 10.72 Mathematical Applications
§10.72(i) Differential Equations with Turning Points
Bessel functions and modified Bessel functions are often used as approximants in the construction of uniform asymptotic approximations and expansions for solutions of linear second-order differential equations containing a parameter. … If f ( z ) has a double zero z 0 , or more generally z 0 is a zero of order m , m = 2 , 3 , 4 , , then uniform asymptotic approximations (but not expansions) can be constructed in terms of Bessel functions, or modified Bessel functions, of order 1 / ( m + 2 ) . …The order of the approximating Bessel functions, or modified Bessel functions, is 1 / ( λ + 2 ) , except in the case when g ( z ) has a double pole at z 0 . … Then for large u asymptotic approximations of the solutions w can be constructed in terms of Bessel functions, or modified Bessel functions, of variable order (in fact the order depends on u and α ). …
13: 10.35 Generating Function and Associated Series
§10.35 Generating Function and Associated Series
10.35.1 e 1 2 z ( t + t 1 ) = m = t m I m ( z ) .
10.35.2 e z cos θ = I 0 ( z ) + 2 k = 1 I k ( z ) cos ( k θ ) ,
10.35.4 1 = I 0 ( z ) 2 I 2 ( z ) + 2 I 4 ( z ) 2 I 6 ( z ) + ,
10.35.5 e ± z = I 0 ( z ) ± 2 I 1 ( z ) + 2 I 2 ( z ) ± 2 I 3 ( z ) + ,
14: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
10.46.2 I ν ( z ) = ( 1 2 z ) ν ϕ ( 1 , ν + 1 ; 1 4 z 2 ) .
For incomplete modified Bessel functions and Hankel functions, including applications, see Cicchetti and Faraone (2004).
15: 10.25 Definitions
Its solutions are called modified Bessel functions or Bessel functions of imaginary argument.
§10.25(ii) Standard Solutions
Branch Conventions
Corresponding to the symbol 𝒞 ν introduced in §10.2(ii), we sometimes use 𝒵 ν ( z ) to denote I ν ( z ) , e ν π i K ν ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and ν . …
16: 10.45 Functions of Imaginary Order
§10.45 Functions of Imaginary Order
10.45.2 I ~ ν ( x ) = ( I i ν ( x ) ) , K ~ ν ( x ) = K i ν ( x ) .
17: 10.34 Analytic Continuation
§10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
18: 10.31 Power Series
§10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
19: 10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .
20: 10.40 Asymptotic Expansions for Large Argument
§10.40 Asymptotic Expansions for Large Argument
§10.40(i) Hankel’s Expansions
Products
§10.40(iv) Exponentially-Improved Expansions