About the Project

for elliptic functions

AdvancedHelp

(0.004 seconds)

11—20 of 164 matching pages

11: 22.4 Periods, Poles, and Zeros
§22.4(i) Distribution
Figure 22.4.1: z -plane. …
§22.4(ii) Graphical Interpretation via Glaisher’s Notation
12: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
13: 22.14 Integrals
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
22.14.1 sn ( x , k ) d x = k 1 ln ( dn ( x , k ) k cn ( x , k ) ) ,
§22.14(ii) Indefinite Integrals of Powers of Jacobian Elliptic Functions
§22.14(iv) Definite Integrals
14: 22.18 Mathematical Applications
§22.18 Mathematical Applications
§22.18(i) Lengths and Parametrization of Plane Curves
Lemniscate
15: 22.7 Landen Transformations
§22.7(i) Descending Landen Transformation
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
§22.7(ii) Ascending Landen Transformation
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
§22.7(iii) Generalized Landen Transformations
16: 22.5 Special Values
§22.5 Special Values
Table 22.5.2: Other special values of Jacobian elliptic functions.
z
In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. …
17: 22.13 Derivatives and Differential Equations
§22.13(i) Derivatives
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
d d z ( sn z ) = cn z dn z d d z ( dc z )  = k 2 sc z nc z
§22.13(ii) First-Order Differential Equations
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
§22.13(iii) Second-Order Differential Equations
18: 22.3 Graphics
See accompanying text
Figure 22.3.24: sn ( x + i y , k ) for 4 x 4 , 0 y 8 , k = 1 + 1 2 i . … Magnify 3D Help
See accompanying text
Figure 22.3.25: sn ( 5 , k ) as a function of complex k 2 , 1 ( k 2 ) 3.5 , 1 ( k 2 ) 1 . … Magnify 3D Help
See accompanying text
Figure 22.3.26: Density plot of | sn ( 5 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
See accompanying text
Figure 22.3.27: Density plot of | sn ( 10 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
See accompanying text
Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
19: 23.1 Special Notation
𝕃 lattice in .
= e i π τ nome.
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …
20: 23.21 Physical Applications
§23.21 Physical Applications
In §22.19(ii) it is noted that Jacobian elliptic functions provide a natural basis of solutions for problems in Newtonian classical dynamics with quartic potentials in canonical form ( 1 x 2 ) ( 1 k 2 x 2 ) . …
§23.21(ii) Nonlinear Evolution Equations
§23.21(iii) Ellipsoidal Coordinates
  • String theory. See Green et al. (1988a, §8.2) and Polchinski (1998, §7.2).