About the Project

for derivatives with respect to order

AdvancedHelp

(0.012 seconds)

11—20 of 93 matching pages

11: 14.21 Definitions and Basic Properties
14.21.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 2 1 z 2 ) w = 0 .
12: Bibliography C
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • 13: 14.5 Special Values
    14.5.2 d 𝖯 ν μ ( x ) d x | x = 0 = 2 μ + 1 π 1 / 2 Γ ( 1 2 ν 1 2 μ + 1 2 ) Γ ( 1 2 ν 1 2 μ ) ,
    14.5.4 d 𝖰 ν μ ( x ) d x | x = 0 = 2 μ π 1 / 2 cos ( 1 2 ( ν + μ ) π ) Γ ( 1 2 ν + 1 2 μ + 1 ) Γ ( 1 2 ν 1 2 μ + 1 2 ) , ν + μ 1 , 2 , 3 , .
    14: 11.2 Definitions
    11.2.7 d 2 w d z 2 + 1 z d w d z + ( 1 ν 2 z 2 ) w = ( 1 2 z ) ν 1 π Γ ( ν + 1 2 ) .
    11.2.9 d 2 w d z 2 + 1 z d w d z ( 1 + ν 2 z 2 ) w = ( 1 2 z ) ν 1 π Γ ( ν + 1 2 ) .
    15: 11.1 Special Notation
    §11.1 Special Notation
    x real variable.
    ν real or complex order.
    n integer order.
    Unless indicated otherwise, primes denote derivatives with respect to the argument. …
    16: 14.2 Differential Equations
    14.2.2 ( 1 x 2 ) d 2 w d x 2 2 x d w d x + ( ν ( ν + 1 ) μ 2 1 x 2 ) w = 0 .
    17: 3.4 Differentiation
    3.4.20 u 0 , 0 x = 1 2 h ( u 1 , 0 u 1 , 0 ) + O ( h 2 ) ,
    3.4.21 u 0 , 0 x = 1 4 h ( u 1 , 1 u 1 , 1 + u 1 , 1 u 1 , 1 ) + O ( h 2 ) .
    3.4.22 2 u 0 , 0 x 2 = 1 h 2 ( u 1 , 0 2 u 0 , 0 + u 1 , 0 ) + O ( h 2 ) ,
    3.4.23 2 u 0 , 0 x 2 = 1 12 h 2 ( u 2 , 0 + 16 u 1 , 0 30 u 0 , 0 + 16 u 1 , 0 u 2 , 0 ) + O ( h 4 ) ,
    3.4.24 2 u 0 , 0 x 2 = 1 3 h 2 ( u 1 , 1 2 u 0 , 1 + u 1 , 1 + u 1 , 0 2 u 0 , 0 + u 1 , 0 + u 1 , 1 2 u 0 , 1 + u 1 , 1 ) + O ( h 2 ) .
    18: 11.9 Lommel Functions
    11.9.1 d 2 w d z 2 + 1 z d w d z + ( 1 ν 2 z 2 ) w = z μ 1
    19: Bibliography B
  • Yu. A. Brychkov and K. O. Geddes (2005) On the derivatives of the Bessel and Struve functions with respect to the order. Integral Transforms Spec. Funct. 16 (3), pp. 187–198.
  • 20: 11.10 Anger–Weber Functions