About the Project

for confluent hypergeometric functions

AdvancedHelp

(0.021 seconds)

11—20 of 95 matching pages

11: 13.1 Special Notation
The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olver’s function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . …
12: 13.10 Integrals
13.10.6 0 e z t t 2 t 2 b 2 𝐌 ( a , b , t 2 ) d t = 1 2 π 1 2 Γ ( b 1 2 ) U ( b 1 2 , a + 1 2 , 1 4 z 2 ) , b > 1 2 , z > 0 ,
13.10.10 0 t λ 1 𝐌 ( a , b , t ) d t = Γ ( λ ) Γ ( a λ ) Γ ( a ) Γ ( b λ ) , 0 < λ < a ,
13.10.12 0 cos ( 2 x t ) 𝐌 ( a , b , t 2 ) d t = π 2 Γ ( a ) x 2 a 1 e x 2 U ( b 1 2 , a + 1 2 , x 2 ) , a > 0 .
13.10.14 0 e t t 1 2 ν 𝐌 ( a , b , t ) J ν ( 2 x t ) d t = x 1 2 ν e x Γ ( b a ) U ( a , a b + ν + 2 , x ) , x > 0 , 1 < ν < 2 ( b a ) 1 2 ,
13.10.16 0 e t t 1 2 ν U ( a , b , t ) J ν ( 2 x t ) d t = Γ ( ν b + 2 ) x 1 2 ν e x 𝐌 ( a , a b + ν + 2 , x ) , x > 0 , max ( b 2 , 1 ) < ν .
13: 13.14 Definitions and Basic Properties
13.14.3 W κ , μ ( z ) = e 1 2 z z 1 2 + μ U ( 1 2 + μ κ , 1 + 2 μ , z ) ,
Except when z = 0 , each branch of the functions M κ , μ ( z ) / Γ ( 2 μ + 1 ) and W κ , μ ( z ) is entire in κ and μ . …
13.14.26 𝒲 { M κ , μ ( z ) , W κ , μ ( z ) } = Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) ,
13.14.28 𝒲 { M κ , μ ( z ) , W κ , μ ( z ) } = Γ ( 1 2 μ ) Γ ( 1 2 μ κ ) ,
13.14.33 W κ , μ ( z ) = Γ ( 2 μ ) Γ ( 1 2 μ κ ) M κ , μ ( z ) + Γ ( 2 μ ) Γ ( 1 2 + μ κ ) M κ , μ ( z ) .
14: 13.23 Integrals
13.23.10 1 Γ ( 1 + 2 μ ) 0 e 1 2 t t 1 2 ( ν 1 ) μ M κ , μ ( t ) J ν ( 2 x t ) d t = e 1 2 x x 1 2 ( κ + μ 3 2 ) Γ ( 1 2 + μ + κ ) W 1 2 ( κ 3 μ + ν + 1 2 ) , 1 2 ( κ + μ ν 1 2 ) ( x ) , x > 0 , 1 < ν < 2 ( μ + κ ) + 1 2 .
13.23.12 0 e 1 2 t t 1 2 ( ν 1 ) μ W κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( ν 2 μ + 1 ) Γ ( 3 2 μ κ + ν ) e 1 2 x x 1 2 ( μ + κ 3 2 ) M 1 2 ( κ 3 μ + ν + 1 2 ) , 1 2 ( ν μ κ + 1 2 ) ( x ) , x > 0 , max ( 2 μ 1 , 1 ) < ν .
13.23.13 g ( μ ) = 1 Γ ( 1 + 2 μ ) 0 f ( x ) x 3 2 M κ , μ ( x ) d x ,
13.23.14 f ( x ) = 1 π i x μ 1 i μ 1 + i μ g ( μ ) Γ ( 1 2 + μ κ ) W κ , μ ( x ) d μ .
Additional integrals involving confluent hypergeometric functions can be found in Apelblat (1983, pp. 388–392), Erdélyi et al. (1954b), Gradshteyn and Ryzhik (2000, §7.6), and Prudnikov et al. (1990, §§1.13, 1.14, 2.19, 4.2.2). …
15: 10.16 Relations to Other Functions
Confluent Hypergeometric Functions
10.16.5 J ν ( z ) = ( 1 2 z ) ν e i z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , ± 2 i z ) ,
For the functions M and U see §13.2(i).
10.16.7 J ν ( z ) = e ( 2 ν + 1 ) π i / 4 2 2 ν Γ ( ν + 1 ) ( 2 z ) 1 2 M 0 , ν ( ± 2 i z ) , 2 ν 1 , 2 , 3 , ,
For the functions M 0 , ν and W 0 , ν see §13.14(i). …
16: 13.4 Integral Representations
13.4.1 𝐌 ( a , b , z ) = 1 Γ ( a ) Γ ( b a ) 0 1 e z t t a 1 ( 1 t ) b a 1 d t , b > a > 0 ,
13.4.2 𝐌 ( a , b , z ) = 1 Γ ( b c ) 0 1 𝐌 ( a , c , z t ) t c 1 ( 1 t ) b c 1 d t , b > c > 0 ,
13.4.3 𝐌 ( a , b , z ) = z 1 2 1 2 b Γ ( a ) 0 e t t a 1 2 b 1 2 J b 1 ( 2 z t ) d t , a > 0 .
13.4.4 U ( a , b , z ) = 1 Γ ( a ) 0 e z t t a 1 ( 1 + t ) b a 1 d t , a > 0 , | ph z | < 1 2 π ,
13.4.6 U ( a , b , z ) = ( 1 ) n z 1 b n Γ ( 1 + a b ) 0 𝐌 ( b a , b , t ) e t t b + n 1 t + z d t , | ph z | < π , n = 0 , 1 , 2 , , b < n < 1 + ( a b ) ,
17: 13.16 Integral Representations
13.16.1 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z μ + 1 2 2 2 μ Γ ( 1 2 + μ κ ) Γ ( 1 2 + μ + κ ) 1 1 e 1 2 z t ( 1 + t ) μ 1 2 κ ( 1 t ) μ 1 2 + κ d t , μ + 1 2 > | κ | ,
13.16.2 M κ , μ ( z ) = Γ ( 1 + 2 μ ) z λ Γ ( 1 + 2 μ 2 λ ) Γ ( 2 λ ) 0 1 M κ λ , μ λ ( z t ) e 1 2 z ( t 1 ) t μ λ 1 2 ( 1 t ) 2 λ 1 d t , μ + 1 2 > λ > 0 ,
13.16.3 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e 1 2 z Γ ( 1 2 + μ + κ ) 0 e t t κ 1 2 J 2 μ ( 2 z t ) d t , ( κ + μ ) + 1 2 > 0 ,
13.16.7 W κ , μ ( z ) = ( 1 ) n e 1 2 z z 1 2 μ n Γ ( 1 + 2 μ ) Γ ( 1 2 μ κ ) 0 M κ , μ ( t ) e 1 2 t t n + μ 1 2 t + z d t , | ph z | < π , n = 0 , 1 , 2 , , ( 1 + 2 μ ) < n < | μ | + κ < 1 2 ,
13.16.8 W κ , μ ( z ) = 2 z e 1 2 z Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) 0 e t t κ 1 2 K 2 μ ( 2 z t ) d t , ( μ κ ) + 1 2 > 0 ,
18: 12.18 Methods of Computation
Because PCFs are special cases of confluent hypergeometric functions, the methods of computation described in §13.29 are applicable to PCFs. …
19: 10.39 Relations to Other Functions
Confluent Hypergeometric Functions
10.39.5 I ν ( z ) = ( 1 2 z ) ν e ± z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , 2 z ) ,
10.39.7 I ν ( z ) = ( 2 z ) 1 2 M 0 , ν ( 2 z ) 2 2 ν Γ ( ν + 1 ) , 2 ν 1 , 2 , 3 , ,
For the functions M , U , M 0 , ν , and W 0 , ν see §§13.2(i) and 13.14(i). …
20: 35.10 Methods of Computation
See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). …