About the Project

for%20derivatives

AdvancedHelp

(0.002 seconds)

1—10 of 33 matching pages

1: 9.18 Tables
β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 ; 8D.

  • 2: 25.3 Graphics
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.3.1: Riemann zeta function ΢ ⁑ ( x ) and its derivative ΢ ⁑ ( x ) , 20 x 10 . Magnify
    3: 10.75 Tables
    β–Ί
  • Olver (1960) tabulates j n , m , J n ⁑ ( j n , m ) , j n , m , J n ⁑ ( j n , m ) , y n , m , Y n ⁑ ( y n , m ) , y n , m , Y n ⁑ ( y n , m ) , n = 0 ⁒ ( 1 2 ) ⁒ 20 ⁀ 1 2 , m = 1 ⁒ ( 1 ) ⁒ 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n ; see §10.21(viii), and more fully Olver (1954).

  • β–Ί
  • Abramowitz and Stegun (1964, Chapter 9) tabulates j n , m , J n ⁑ ( j n , m ) , j n , m , J n ⁑ ( j n , m ) , n = 0 ⁒ ( 1 ) ⁒ 8 , m = 1 ⁒ ( 1 ) ⁒ 20 , 5D (10D for n = 0 ), y n , m , Y n ⁑ ( y n , m ) , y n , m , Y n ⁑ ( y n , m ) , n = 0 ⁒ ( 1 ) ⁒ 8 , m = 1 ⁒ ( 1 ) ⁒ 20 , 5D (8D for n = 0 ), J 0 ⁑ ( j 0 , m ⁒ x ) , m = 1 ⁒ ( 1 ) ⁒ 5 , x = 0 ⁒ ( .02 ) ⁒ 1 , 5D. Also included are the first 5 zeros of the functions x ⁒ J 1 ⁑ ( x ) Ξ» ⁒ J 0 ⁑ ( x ) , J 1 ⁑ ( x ) Ξ» ⁒ x ⁒ J 0 ⁑ ( x ) , J 0 ⁑ ( x ) ⁒ Y 0 ⁑ ( Ξ» ⁒ x ) Y 0 ⁑ ( x ) ⁒ J 0 ⁑ ( Ξ» ⁒ x ) , J 1 ⁑ ( x ) ⁒ Y 1 ⁑ ( Ξ» ⁒ x ) Y 1 ⁑ ( x ) ⁒ J 1 ⁑ ( Ξ» ⁒ x ) , J 1 ⁑ ( x ) ⁒ Y 0 ⁑ ( Ξ» ⁒ x ) Y 1 ⁑ ( x ) ⁒ J 0 ⁑ ( Ξ» ⁒ x ) for various values of Ξ» and Ξ» 1 in the interval [ 0 , 1 ] , 4–8D.

  • β–Ί
  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ⁑ ( x ) , 𝗃 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , 𝗂 n ( 1 ) ⁑ ( x ) , 𝗂 n ( 1 ) ⁑ ( x ) , 𝗄 n ⁑ ( x ) , 𝗄 n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x ⁒ 𝗃 n ⁑ ( x ) , ( x ⁒ 𝗃 n ⁑ ( x ) ) , x ⁒ 𝗒 n ⁑ ( x ) , ( x ⁒ 𝗒 n ⁑ ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ⁑ ( z ) , 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) , 𝗄 n ⁑ ( z ) , n = 0 ⁒ ( 1 ) ⁒ 15 , 20(10)50, 100, z = 4 + 2 ⁒ i , 20 + 10 ⁒ i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • 4: 3.8 Nonlinear Equations
    β–Ί
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ⁒ ) × 10 7 .
    5: Bibliography
    β–Ί
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 6: 9.9 Zeros
    β–Ί
    9.9.8 a k = U ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 3 ) ) ,
    β–Ί
    9.9.9 Ai ⁑ ( a k ) = ( 1 ) k 1 ⁒ W ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 3 ) ) .
    7: 20.7 Identities
    β–Ί
    §20.7(vii) Derivatives of Ratios of Theta Functions
    β–Ί
    20.7.25 d d z ⁑ ( ΞΈ 2 ⁑ ( z | Ο„ ) ΞΈ 4 ⁑ ( z | Ο„ ) ) = ΞΈ 3 2 ⁑ ( 0 | Ο„ ) ⁒ ΞΈ 1 ⁑ ( z | Ο„ ) ⁒ ΞΈ 3 ⁑ ( z | Ο„ ) ΞΈ 4 2 ⁑ ( z | Ο„ ) .
    β–ΊSee Lawden (1989, pp. 19–20). … β–Ί
    20.7.34 θ 1 ⁑ ( z , q 2 ) ⁒ θ 3 ⁑ ( z , q 2 ) θ 1 ⁑ ( z , i ⁒ q ) = θ 2 ⁑ ( z , q 2 ) ⁒ θ 4 ⁑ ( z , q 2 ) θ 2 ⁑ ( z , i ⁒ q ) = i 1 / 4 ⁒ θ 2 ⁑ ( 0 , q 2 ) ⁒ θ 4 ⁑ ( 0 , q 2 ) 2 .
    8: 12.10 Uniform Asymptotic Expansions for Large Parameter
    β–Ί
    12.10.33 𝖠 s + 1 ⁑ ( Ο„ ) = 4 ⁒ Ο„ 2 ⁒ ( Ο„ + 1 ) 2 ⁒ d d Ο„ ⁑ 𝖠 s ⁑ ( Ο„ ) 1 4 ⁒ 0 Ο„ ( 20 ⁒ u 2 + 20 ⁒ u + 3 ) ⁒ 𝖠 s ⁑ ( u ) ⁒ d u , s = 0 , 1 , 2 , ,
    9: Bibliography R
    β–Ί
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • β–Ί
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • β–Ί
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • β–Ί
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • β–Ί
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • 10: 32.8 Rational Solutions
    β–Ί
    32.8.3 w ⁑ ( z ; 3 ) = 3 ⁒ z 2 z 3 + 4 6 ⁒ z 2 ⁒ ( z 3 + 10 ) z 6 + 20 ⁒ z 3 80 ,
    β–Ί
    32.8.4 w ⁑ ( z ; 4 ) = 1 z + 6 ⁒ z 2 ⁒ ( z 3 + 10 ) z 6 + 20 ⁒ z 3 80 9 ⁒ z 5 ⁒ ( z 3 + 40 ) z 9 + 60 ⁒ z 6 + 11200 .
    β–Ί
    32.8.5 w ⁑ ( z ; n ) = d d z ⁑ ( ln ⁑ ( Q n 1 ⁑ ( z ) Q n ⁑ ( z ) ) ) ,
    β–Ί
    Q 3 ⁑ ( z ) = z 6 + 20 ⁒ z 3 80 ,
    β–Ί
    32.8.9 w ⁑ ( z ; n ) = d d z ⁑ ( ln ⁑ ( Ο„ n 1 ⁑ ( z ) Ο„ n ⁑ ( z ) ) ) ,