for 3F2 hypergeometric functions of matrix argument
(0.005 seconds)
1—10 of 979 matching pages
1: 15.2 Definitions and Analytical Properties
…
►
§15.2(i) Gauss Series
►The hypergeometric function is defined by the Gauss series … … ►On the circle of convergence, , the Gauss series: … ►§15.2(ii) Analytic Properties
…2: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
… ►§35.8(iii) Case
►Kummer Transformation
… ►Pfaff–Saalschütz Formula
… ►Thomae Transformation
…3: 35.7 Gaussian Hypergeometric Function of Matrix Argument
§35.7 Gaussian Hypergeometric Function of Matrix Argument
►§35.7(i) Definition
… ►Jacobi Form
… ►Confluent Form
… ►Integral Representation
…4: 35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6 Confluent Hypergeometric Functions of Matrix Argument
►§35.6(i) Definitions
… ►Laguerre Form
… ►§35.6(ii) Properties
… ►§35.6(iii) Relations to Bessel Functions of Matrix Argument
…5: 34.2 Definition: Symbol
§34.2 Definition: Symbol
►The quantities in the symbol are called angular momenta. …The corresponding projective quantum numbers are given by … ►where is defined as in §16.2. ►For alternative expressions for the symbol, written either as a finite sum or as other terminating generalized hypergeometric series of unit argument, see Varshalovich et al. (1988, §§8.21, 8.24–8.26).6: 17.1 Special Notation
§17.1 Special Notation
… ►
nonnegative integers. |
|
… |
7: 16.2 Definition and Analytic Properties
…
►
§16.2(i) Generalized Hypergeometric Series
… ► … ►Polynomials
… ►Note also that any partial sum of the generalized hypergeometric series can be represented as a generalized hypergeometric function via … ►§16.2(v) Behavior with Respect to Parameters
…8: 35.1 Special Notation
…
►(For other notation see Notation for the Special Functions.)
…
►
►
►The main functions treated in this chapter are the multivariate gamma and beta functions, respectively and , and the special functions of matrix argument: Bessel (of the first kind) and (of the second kind) ; confluent hypergeometric (of the first kind) or and (of the second kind) ; Gaussian hypergeometric
or ; generalized hypergeometric
or .
►An alternative notation for the multivariate gamma function is (Herz (1955, p. 480)).
Related notations for the Bessel functions are (Faraut and Korányi (1994, pp. 320–329)), (Terras (1988, pp. 49–64)), and (Faraut and Korányi (1994, pp. 357–358)).
complex variables. |
|
… |
9: 35.5 Bessel Functions of Matrix Argument
§35.5 Bessel Functions of Matrix Argument
►§35.5(i) Definitions
… ►§35.5(ii) Properties
… ►§35.5(iii) Asymptotic Approximations
►For asymptotic approximations for Bessel functions of matrix argument, see Herz (1955) and Butler and Wood (2003).10: 19.16 Definitions
…
►