About the Project
NIST

first

AdvancedHelp

(0.001 seconds)

1—10 of 406 matching pages

1: 29.10 Lamé Functions with Imaginary Periods
Ec ν 2 m ( i ( z - K - i K ) , k 2 ) ,
Ec ν 2 m + 1 ( i ( z - K - i K ) , k 2 ) ,
Es ν 2 m + 1 ( i ( z - K - i K ) , k 2 ) ,
The first and the fourth functions have period 2 i K ; the second and the third have period 4 i K . …
2: 29.13 Graphics
See accompanying text
Figure 29.13.5: uE 4 m ( x , 0.1 ) for - 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.6: uE 4 m ( x , 0.9 ) for - 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.7: sE 5 m ( x , 0.1 ) for - 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.8: sE 5 m ( x , 0.9 ) for - 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.9: cE 5 m ( x , 0.1 ) for - 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
3: 10.35 Generating Function and Associated Series
10.35.2 e z cos θ = I 0 ( z ) + 2 k = 1 I k ( z ) cos ( k θ ) ,
10.35.4 1 = I 0 ( z ) - 2 I 2 ( z ) + 2 I 4 ( z ) - 2 I 6 ( z ) + ,
10.35.5 e ± z = I 0 ( z ) ± 2 I 1 ( z ) + 2 I 2 ( z ) ± 2 I 3 ( z ) + ,
cosh z = I 0 ( z ) + 2 I 2 ( z ) + 2 I 4 ( z ) + 2 I 6 ( z ) + ,
sinh z = 2 I 1 ( z ) + 2 I 3 ( z ) + 2 I 5 ( z ) + .
4: 14.10 Recurrence Relations and Derivatives
14.10.1 P ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( 1 - x 2 ) - 1 / 2 P ν μ + 1 ( x ) + ( ν - μ ) ( ν + μ + 1 ) P ν μ ( x ) = 0 ,
14.10.2 ( 1 - x 2 ) 1 / 2 P ν μ + 1 ( x ) - ( ν - μ + 1 ) P ν + 1 μ ( x ) + ( ν + μ + 1 ) x P ν μ ( x ) = 0 ,
14.10.3 ( ν - μ + 2 ) P ν + 2 μ ( x ) - ( 2 ν + 3 ) x P ν + 1 μ ( x ) + ( ν + μ + 1 ) P ν μ ( x ) = 0 ,
Q ν μ ( x ) also satisfies (14.10.1)–(14.10.5). …In addition, P ν μ ( x ) and Q ν μ ( x ) satisfy (14.10.3)–(14.10.5).
5: 10.28 Wronskians and Cross-Products
10.28.1 𝒲 { I ν ( z ) , I - ν ( z ) } = I ν ( z ) I - ν - 1 ( z ) - I ν + 1 ( z ) I - ν ( z ) = - 2 sin ( ν π ) / ( π z ) ,
10.28.2 𝒲 { K ν ( z ) , I ν ( z ) } = I ν ( z ) K ν + 1 ( z ) + I ν + 1 ( z ) K ν ( z ) = 1 / z .
6: 22.3 Graphics
See accompanying text
Figure 22.3.16: sn ( x + i y , k ) for k = 0.99 , - 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
See accompanying text
Figure 22.3.17: cn ( x + i y , k ) for k = 0.99 , - 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
See accompanying text
Figure 22.3.18: dn ( x + i y , k ) for k = 0.99 , - 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
See accompanying text
Figure 22.3.19: cd ( x + i y , k ) for k = 0.99 , - 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
See accompanying text
Figure 22.3.20: dc ( x + i y , k ) for k = 0.99 , - 3 K x 3 K , 0 y 4 K . K = 3.3566 , K = 1.5786 . Magnify 3D Help
7: 22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n - 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
8: 22.4 Periods, Poles, and Zeros
The other poles are at congruent points, which is the set of points obtained by making translations by 2 m K + 2 n i K , where m , n . … Figure 22.4.1 illustrates the locations in the z -plane of the poles and zeros of the three principal Jacobian functions in the rectangle with vertices 0 , 2 K , 2 K + 2 i K , 2 i K . … Figure 22.4.2 depicts the fundamental unit cell in the z -plane, with vertices s = 0 , c = K , d = K + i K , n = i K . The set of points z = m K + n i K , m , n , comprise the lattice for the 12 Jacobian functions; all other lattice unit cells are generated by translation of the fundamental unit cell by m K + n i K , where again m , n . … This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . …
9: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. … It also contains a table of Gaussian polynomials up to [ 12 6 ] q . …
10: 14.18 Sums
14.18.1 P ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = P ν ( cos θ 1 ) P ν ( cos θ 2 ) + 2 m = 1 ( - 1 ) m P ν - m ( cos θ 1 ) P ν m ( cos θ 2 ) cos ( m ϕ ) ,
14.18.2 P n ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = m = - n n ( - 1 ) m P n - m ( cos θ 1 ) P n m ( cos θ 2 ) cos ( m ϕ ) .
14.18.3 Q ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = P ν ( cos θ 1 ) Q ν ( cos θ 2 ) + 2 m = 1 ( - 1 ) m P ν - m ( cos θ 1 ) Q ν m ( cos θ 2 ) cos ( m ϕ ) .
14.18.6 ( x - y ) k = 0 n ( 2 k + 1 ) P k ( x ) P k ( y ) = ( n + 1 ) ( P n + 1 ( x ) P n ( y ) - P n ( x ) P n + 1 ( y ) ) ,
14.18.7 ( x - y ) k = 0 n ( 2 k + 1 ) P k ( x ) Q k ( y ) = ( n + 1 ) ( P n + 1 ( x ) Q n ( y ) - P n ( x ) Q n + 1 ( y ) ) - 1 .