About the Project

factorials (rising or falling)

AdvancedHelp

(0.001 seconds)

6 matching pages

1: 26.1 Special Notation
Many combinatorics references use the rising and falling factorials: …
2: 5.2 Definitions
Pochhammer symbols (rising factorials) ( x ) n = x ( x + 1 ) ( x + n 1 ) and falling factorials ( 1 ) n ( x ) n = x ( x 1 ) ( x n + 1 ) can be expressed in terms of each other via …
3: 18.39 Applications in the Physical Sciences
Here the H n ( x ) are Hermite polynomials, w ( x ) = e x 2 , and h n = 2 n n ! π . … see Bethe and Salpeter (1957, p. 13), Pauling and Wilson (1985, pp. 130, 131); and noting that this differs from the Rodrigues formula of (18.5.5) for the Laguerre OP’s, in the omission of an n ! in the denominator. …
18.39.40 𝐋 p + m m ( ρ ) = ( 1 ) m ( p + m ) ! L p ( m ) ( ρ ) ,
18.39.42 R n , l ( r ) = 2 n 2 Z 3 ( n l 1 ) ! ( ( n + l ) ! ) 3 e ρ n / 2 ρ n l 𝐋 n + l 2 l + 1 ( ρ n ) .
For applications of Legendre polynomials in fluid dynamics to study the flow around the outside of a puff of hot gas rising through the air, see Paterson (1983). …
4: 1.16 Distributions
We denote a regular distribution by Λ f , or simply f , where f is the function giving rise to the distribution. …
1.16.23 ( 1 ) n n ! x + 1 n = 𝐷 ( n + 1 ) ln + x , n = 0 , 1 , 2 , .
A locally integrable function f ( x ) = f ( x 1 , x 2 , , x n ) gives rise to a distribution Λ f defined by …
5: 37.3 Triangular Region with Weight Function x α y β ( 1 x y ) γ
37.3.5 h k , n α , β , γ = ( α + 1 ) n k ( β + 1 ) k ( γ + 1 ) k ( β + γ + 2 ) n + k ( n k ) ! k ! ( β + γ + 2 ) k ( α + β + γ + 3 ) n + k ( n + k + α + β + γ + 2 ) ( k + β + γ + 1 ) ( 2 n + α + β + γ + 2 ) ( 2 k + β + γ + 1 ) .
37.3.6 d j , m = ( 1 ) m j ( n + k + α + β + γ + 2 ) m k ( k + β + γ + 1 ) j ( m k ) ! j ! ( m + k + β + γ + 2 ) n m ( j + β + 1 ) k j ( n m ) ! ( k j ) ! .
37.3.13 U k , n α , β , γ , V j , m α , β , γ α , β , γ = ( α + 1 ) k ( β + 1 ) n k ( γ + 1 ) n k ! ( n k ) ! ( α + β + γ + 3 ) 2 n δ n , m δ k , j .
37.3.27 D x P k , n α , β , γ ( x , y ) = a k , n β , γ P k 1 , n 1 α + 1 , β , γ + 1 ( x , y ) + b k , n α , β , γ P k , n 1 α + 1 , β , γ + 1 ( x , y ) ,
The three-term relations (37.2.7) give rise to a three-term and a nine-term relation as follows: …
6: null
error generating summary