About the Project

exponential integrals

AdvancedHelp

(0.012 seconds)

11—20 of 238 matching pages

11: 8.24 Physical Applications
§8.24 Physical Applications
§8.24(iii) Generalized Exponential Integral
The function E p ( x ) , with p > 0 , appears in theories of transport and radiative equilibrium (Hopf (1934), Kourganoff (1952), Altaç (1996)). With more general values of p , E p ( x ) supplies fundamental auxiliary functions that are used in the computation of molecular electronic integrals in quantum chemistry (Harris (2002), Shavitt (1963)), and also wave acoustics of overlapping sound beams (Ding (2000)).
12: 6.11 Relations to Other Functions
Incomplete Gamma Function
6.11.1 E 1 ( z ) = Γ ( 0 , z ) .
Confluent Hypergeometric Function
6.11.2 E 1 ( z ) = e z U ( 1 , 1 , z ) ,
13: 6.21 Software
§6.21(ii) E 1 ( x ) , Ei ( x ) , Si ( x ) , Ci ( x ) , Shi ( x ) , Chi ( x ) , x
§6.21(iii) E 1 ( z ) , Si ( z ) , Ci ( z ) , Shi ( z ) , Chi ( z ) , z
14: 6.6 Power Series
§6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.4 Ein ( z ) = n = 1 ( 1 ) n 1 z n n ! n ,
15: 8.26 Tables
§8.26(iv) Generalized Exponential Integral
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Chiccoli et al. (1988) presents a short table of E p ( x ) for p = 9 2 ( 1 ) 1 2 , 0 x 200 to 14S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • 16: 8.20 Asymptotic Expansions of E p ( z )
    §8.20 Asymptotic Expansions of E p ( z )
    §8.20(i) Large z
    8.20.1 E p ( z ) = e z z ( k = 0 n 1 ( 1 ) k ( p ) k z k + ( 1 ) n ( p ) n e z z n 1 E n + p ( z ) ) , n = 1 , 2 , 3 , .
    For an exponentially-improved asymptotic expansion of E p ( z ) see §2.11(iii).
    §8.20(ii) Large p
    17: 6.7 Integral Representations
    §6.7 Integral Representations
    §6.7(i) Exponential Integrals
    6.7.2 e x 0 α e x t 1 t d t = Ei ( x ) Ei ( ( 1 α ) x ) , 0 α < 1 , x > 0 .
    Many integrals with exponentials and rational functions, for example, integrals of the type e z R ( z ) d z , where R ( z ) is an arbitrary rational function, can be represented in finite form in terms of the function E 1 ( z ) and elementary functions; see Lebedev (1965, p. 42). …
    18: 6.14 Integrals
    §6.14(i) Laplace Transforms
    6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
    6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
    §6.14(ii) Other Integrals
    6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
    19: 6.10 Other Series Expansions
    §6.10(i) Inverse Factorial Series
    §6.10(ii) Expansions in Series of Spherical Bessel Functions
    6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
    6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
    An expansion for E 1 ( z ) can be obtained by combining (6.2.4) and (6.10.8).
    20: 8.27 Approximations
  • DiDonato (1978) gives a simple approximation for the function F ( p , x ) = x p e x 2 / 2 x e t 2 / 2 t p d t (which is related to the incomplete gamma function by a change of variables) for real p and large positive x . This takes the form F ( p , x ) = 4 x / h ( p , x ) , approximately, where h ( p , x ) = 3 ( x 2 p ) + ( x 2 p ) 2 + 8 ( x 2 + p ) and is shown to produce an absolute error O ( x 7 ) as x .

  • §8.27(ii) Generalized Exponential Integral
  • Luke (1975, p. 103) gives Chebyshev-series expansions for E 1 ( x ) and related functions for x 5 .

  • Luke (1975, p. 106) gives rational and Padé approximations, with remainders, for E 1 ( z ) and z 1 0 z t 1 ( 1 e t ) d t for complex z with | ph z | π .

  • Verbeeck (1970) gives polynomial and rational approximations for E p ( x ) = ( e x / x ) P ( z ) , approximately, where P ( z ) denotes a quotient of polynomials of equal degree in z = x 1 .