# exponential function

(0.018 seconds)

## 1—10 of 407 matching pages

##### 1: 4.2 Definitions
###### §4.2(iii) The ExponentialFunction
4.2.19 $\exp z=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots.$
The function $\exp$ is an entire function of $z$, with no real or complex zeros. …
4.2.24 $\exp z=e^{x}\cos y+ie^{x}\sin y.$
##### 3: 6.11 Relations to Other Functions
###### Incomplete Gamma Function
6.11.1 $E_{1}\left(z\right)=\Gamma\left(0,z\right).$
##### 5: 17.17 Physical Applications
See Kassel (1995). …
##### 7: 4.1 Special Notation
 $k,m,n$ integers. …
The main purpose of the present chapter is to extend these definitions and properties to complex arguments $z$. The main functions treated in this chapter are the logarithm $\ln z$, $\operatorname{Ln}z$; the exponential $\exp z$, $e^{z}$; the circular trigonometric (or just trigonometric) functions $\sin z$, $\cos z$, $\tan z$, $\csc z$, $\sec z$, $\cot z$; the inverse trigonometric functions $\operatorname{arcsin}z$, $\operatorname{Arcsin}z$, etc. …
##### 8: 4.3 Graphics Figure 4.3.1: ln ⁡ x and e x . … Magnify
###### §4.3(ii) Complex Arguments: Conformal Maps Figure 4.3.4: e x + i ⁢ y . Magnify 3D Help
##### 9: 8.5 Confluent Hypergeometric Representations
8.5.1 $\gamma\left(a,z\right)=a^{-1}z^{a}e^{-z}M\left(1,1+a,z\right)=a^{-1}z^{a}M% \left(a,1+a,-z\right),$ $a\neq 0,-1,-2,\dots$.
8.5.2 $\gamma^{*}\left(a,z\right)=e^{-z}{\mathbf{M}}\left(1,1+a,z\right)={\mathbf{M}}% \left(a,1+a,-z\right).$
8.5.3 $\Gamma\left(a,z\right)=e^{-z}U\left(1-a,1-a,z\right)=z^{a}e^{-z}U\left(1,1+a,z% \right).$
8.5.4 $\gamma\left(a,z\right)=a^{-1}z^{\frac{1}{2}a-\frac{1}{2}}e^{-\frac{1}{2}z}M_{% \frac{1}{2}a-\frac{1}{2},\frac{1}{2}a}\left(z\right).$
8.5.5 $\Gamma\left(a,z\right)=e^{-\frac{1}{2}z}z^{\frac{1}{2}a-\frac{1}{2}}W_{\frac{1% }{2}a-\frac{1}{2},\frac{1}{2}a}\left(z\right).$
##### 10: 4.12 Generalized Logarithms and Exponentials
A generalized exponential function $\phi(x)$ satisfies the equations …
4.12.6 $\phi(x)=\ln\left(x+1\right),$ $-1,
4.12.7 $\phi(x)=\underbrace{\exp\cdots\exp}_{\left\lfloor x\right\rfloor\text{ times}}% (x-\left\lfloor x\right\rfloor),$ $x>1$.