exponent parameters
(0.000 seconds)
1—10 of 20 matching pages
1: 31.8 Solutions via Quadratures
…
►For half-odd-integer values of the exponent parameters:
…
►The curve reflects the finite-gap property of Equation (31.2.1) when the exponent parameters satisfy (31.8.1) for .
…
2: 31.14 General Fuchsian Equation
…
►The three sets of parameters comprise the singularity parameters
, the exponent parameters
, and the free accessory parameters
.
…
3: 31.2 Differential Equations
…
►All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, , can be transformed into (31.2.1).
►The parameters play different roles: is the singularity parameter; are exponent parameters; is the accessory parameter.
…
4: 27.2 Functions
…
►is the sum of the th powers of the divisors of , where the exponent
can be real or complex.
…
5: 31.15 Stieltjes Polynomials
…
►If the exponent and singularity parameters satisfy (31.15.5)–(31.15.6), then for every multi-index , where each is a nonnegative integer, there is a unique Stieltjes polynomial with zeros in the open interval for each .
…
6: 30.2 Differential Equations
…
►
30.2.1
►This equation has regular singularities at with exponents
and an irregular singularity of rank 1 at (if ).
The equation contains three real parameters
, , and .
…
►With Equation (30.2.1) changes to
►
30.2.4
…
7: 31.3 Basic Solutions
…
►
denotes the solution of (31.2.1) that corresponds to the exponent
at and assumes the value there.
…
►Similarly, if , then the solution of (31.2.1) that corresponds to the exponent
at is
…
►Solutions of (31.2.1) corresponding to the exponents
and at are respectively,
…
►Solutions of (31.2.1) corresponding to the exponents
and at are respectively,
…
►Solutions of (31.2.1) corresponding to the exponents
and at are respectively,
…
8: 31.11 Expansions in Series of Hypergeometric Functions
…
►
31.11.3
…
►
31.11.7
…
►Then the Fuchs–Frobenius solution at belonging to the exponent
has the expansion (31.11.1) with
…
►For example, consider the Heun function which is analytic at and has exponent
at .
…In this case the accessory parameter
is a root of the continued-fraction equation
…
9: 28.29 Definitions and Basic Properties
…
►
28.29.9
…
10: 28.2 Definitions and Basic Properties
…
►
28.2.16
…