About the Project

expansions in series of incomplete gamma functions

AdvancedHelp

(0.019 seconds)

11—20 of 30 matching pages

11: 3.10 Continued Fractions
Every convergent, asymptotic, or formal seriesFor several special functions the S -fractions are known explicitly, but in any case the coefficients a n can always be calculated from the power-series coefficients by means of the quotient-difference algorithm; see Table 3.10.1. … We say that it is associated with the formal power series f ( z ) in (3.10.7) if the expansion of its n th convergent C n in ascending powers of z , agrees with (3.10.7) up to and including the term in z 2 n 1 , n = 1 , 2 , 3 , . … For special functions see §5.10 (gamma function), §7.9 (error function), §8.9 (incomplete gamma functions), §8.17(v) (incomplete beta function), §8.19(vii) (generalized exponential integral), §§10.10 and 10.33 (quotients of Bessel functions), §13.6 (quotients of confluent hypergeometric functions), §13.19 (quotients of Whittaker functions), and §15.7 (quotients of hypergeometric functions). … In Gautschi (1979c) the forward series algorithm is used for the evaluation of a continued fraction of an incomplete gamma function (see §8.9). …
12: Bibliography O
  • A. B. Olde Daalhuis (1994) Asymptotic expansions for q -gamma, q -exponential, and q -Bessel functions. J. Math. Anal. Appl. 186 (3), pp. 896–913.
  • A. B. Olde Daalhuis (1998c) On the resurgence properties of the uniform asymptotic expansion of the incomplete gamma function. Methods Appl. Anal. 5 (4), pp. 425–438.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • F. W. J. Olver (1995) On an asymptotic expansion of a ratio of gamma functions. Proc. Roy. Irish Acad. Sect. A 95 (1), pp. 5–9.
  • 13: 8.25 Methods of Computation
    §8.25(i) Series Expansions
    Although the series expansions in §§8.7, 8.19(iv), and 8.21(vi) converge for all finite values of z , they are cumbersome to use when | z | is large owing to slowness of convergence and cancellation. … DiDonato and Morris (1986) describes an algorithm for computing P ( a , x ) and Q ( a , x ) for a 0 , x 0 , and a + x 0 from the uniform expansions in §8.12. … The computation of γ ( a , z ) and Γ ( a , z ) by means of continued fractions is described in Jones and Thron (1985) and Gautschi (1979b, §§4.3, 5). … Expansions involving incomplete gamma functions often require the generation of sequences P ( a + n , x ) , Q ( a + n , x ) , or γ ( a + n , x ) for fixed a and n = 0 , 1 , 2 , . …
    14: 19.5 Maclaurin and Related Expansions
    §19.5 Maclaurin and Related Expansions
    Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). For series expansions of Π ( ϕ , α 2 , k ) when | α 2 | < 1 see Erdélyi et al. (1953b, §13.6(9)). …
    15: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • A. J. E. M. Janssen (2021) Bounds on Dawson’s integral occurring in the analysis of a line distribution network for electric vehicles. Eurandom Preprint Series Technical Report 14, Eurandom, Eindhoven, The Netherlands.
  • D. J. Jeffrey and N. Murdoch (2017) Stirling Numbers, Lambert W and the Gamma Function. In Mathematical Aspects of Computer and Information Sciences, J. Blömer, I. S. Kotsireas, T. Kutsia, and D. E. Simos (Eds.), Cham, pp. 275–279.
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • W. B. Jones and W. J. Thron (1985) On the computation of incomplete gamma functions in the complex domain. J. Comput. Appl. Math. 12/13, pp. 401–417.
  • 16: Bibliography N
  • G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
  • G. Nemes (2016) The resurgence properties of the incomplete gamma function, I. Anal. Appl. (Singap.) 14 (5), pp. 631–677.
  • E. Neuman (2013) Inequalities and bounds for the incomplete gamma function. Results Math. 63 (3-4), pp. 1209–1214.
  • 17: Bibliography S
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • B. D. Sleeman (1966b) The expansion of Lamé functions into series of associated Legendre functions of the second kind. Proc. Cambridge Philos. Soc. 62, pp. 441–452.
  • P. Spellucci and P. Pulay (1975) Effective calculation of the incomplete gamma function for parameter values α = ( 2 n + 1 ) / 2 , n = 0 , , 5 . Angew. Informatik 17, pp. 30–32.
  • 18: 8.12 Uniform Asymptotic Expansions for Large Parameter
    §8.12 Uniform Asymptotic Expansions for Large Parameter
    The last reference also includes an exponentially-improved version (§2.11(iii)) of the expansions (8.12.4) and (8.12.7) for Q ( a , z ) . … Lastly, a uniform approximation for Γ ( a , a x ) for large a , with error bounds, can be found in Dunster (1996a). For other uniform asymptotic approximations of the incomplete gamma functions in terms of the function erfc see Paris (2002b) and Dunster (1996a).
    Inverse Function
    19: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • R. J. Moore (1982) Algorithm AS 187. Derivatives of the incomplete gamma integral. Appl. Statist. 31 (3), pp. 330–335.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • 20: Bibliography P
  • V. I. Pagurova (1963) Tablitsy nepolnoi gamma-funktsii. Vyčisl. Centr Akad. Nauk SSSR, Moscow (Russian).
  • V. I. Pagurova (1965) An asymptotic formula for the incomplete gamma function. Ž. Vyčisl. Mat. i Mat. Fiz. 5, pp. 118–121 (Russian).
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • R. B. Paris (2003) The asymptotic expansion of a generalised incomplete gamma function. J. Comput. Appl. Math. 151 (2), pp. 297–306.