About the Project

expansions%20in%20series%20of%20hypergeometric%20functions

AdvancedHelp

(0.018 seconds)

1—10 of 19 matching pages

1: 20.11 Generalizations and Analogs
§20.11(ii) Ramanujan’s Theta Function and q -Series
In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions22.2), and Weierstrass elliptic functions23.6(ii)) can be expanded in q -series via (20.9.1). … For applications to rapidly convergent expansions for π see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004). … Multidimensional theta functions with characteristics are defined in §21.2(ii) and their properties are described in §§21.3(ii), 21.5(ii), and 21.6. …
2: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • N. E. Nørlund (1955) Hypergeometric functions. Acta Math. 94, pp. 289–349.
  • H. M. Nussenzveig (1992) Diffraction Effects in Semiclassical Scattering. Montroll Memorial Lecture Series in Mathematical Physics, Cambridge University Press.
  • 3: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • W. B. Ford (1960) Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series. Chelsea Publishing Co., New York.
  • C. L. Frenzen and R. Wong (1986) Asymptotic expansions of the Lebesgue constants for Jacobi series. Pacific J. Math. 122 (2), pp. 391–415.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 4: 6.20 Approximations
  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • §6.20(ii) Expansions in Chebyshev Series
  • Luke and Wimp (1963) covers Ei ( x ) for x 4 (20D), and Si ( x ) and Ci ( x ) for x 4 (20D).

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 5: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1991b) Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms. SIAM J. Math. Anal. 22 (5), pp. 1475–1489.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 6: Bibliography V
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 7: Bibliography K
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • S. K. Kim (1972) The asymptotic expansion of a hypergeometric function F 2 2 ( 1 , α ; ρ 1 , ρ 2 ; z ) . Math. Comp. 26 (120), pp. 963.
  • T. H. Koornwinder and I. Sprinkhuizen-Kuyper (1978) Hypergeometric functions of 2 × 2 matrix argument are expressible in terms of Appel’s functions F 4 . Proc. Amer. Math. Soc. 70 (1), pp. 39–42.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 8: Bibliography M
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • 9: Bibliography S
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • B. D. Sleeman (1966b) The expansion of Lamé functions into series of associated Legendre functions of the second kind. Proc. Cambridge Philos. Soc. 62, pp. 441–452.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 10: Bibliography D
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster, R. B. Paris, and S. Cang (1998) On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function. Methods Appl. Anal. 5 (3), pp. 223–247.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.