erf
(0.001 seconds)
1—10 of 21 matching pages
1: 7.1 Special Notation
2: 7.24 Approximations
Hastings (1955) gives several minimax polynomial and rational approximations for , and the auxiliary functions and .
Cody (1969) provides minimax rational approximations for and . The maximum relative precision is about 20S.
Luke (1969b, pp. 323–324) covers and for (the Chebyshev coefficients are given to 20D); and for (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).
Schonfelder (1978) gives coefficients of Chebyshev expansions for on , for on , and for on (30D).
Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for , , , , and ; approximate errors are given for a selection of -values.
3: 7.25 Software
4: 7.23 Tables
Abramowitz and Stegun (1964, Chapter 7) includes , , , 10D; , , 8S; , , 7D; , , , 6S; , , 10D; , , 9D; , , , 7D; , , , , 15D.
Zhang and Jin (1996, pp. 637, 639) includes , , , 8D; , , , 8D.
Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of , , , 7D and 8D, respectively; the real and imaginary parts of , , , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.
Fettis et al. (1973) gives the first 100 zeros of and (the table on page 406 of this reference is for , not for ), 11S.
Zhang and Jin (1996, p. 642) includes the first 10 zeros of , 9D; the first 25 distinct zeros of and , 8S.