About the Project

equianharmonic

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 23.4 Graphics
β–Ί
§23.4(i) Real Variables
β–ΊLine graphs of the Weierstrass functions ⁑ ( x ) , ΞΆ ⁑ ( x ) , and Οƒ ⁑ ( x ) , illustrating the lemniscatic and equianharmonic cases. … β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.2: ⁑ ( x ; 0 , g 3 ⁑ ) for 0 x 9 , g 3 ⁑ = 0. …(Equianharmonic case.) Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.4: ΞΆ ⁑ ( x ; 0 , g 3 ⁑ ) for 0 x 8 , g 3 ⁑ = 0. …(Equianharmonic case.) Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.6: Οƒ ⁑ ( x ; 0 , g 3 ⁑ ) for 5 x 5 , g 3 ⁑ = 0. …(Equianharmonic case.) Magnify
2: 23.5 Special Lattices
β–Ί
§23.5(v) Equianharmonic Lattice
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.5.2: Equianharmonic lattice. … Magnify
3: 22.5 Special Values
β–ΊFor values of K ⁑ , K ⁑ when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i ⁒ Ο€ / 3 (equianharmonic case) see §23.5(v).
4: 23.22 Methods of Computation
β–Ί
  • (c)

    If c = 0 , then

    23.22.3 2 ⁒ Ο‰ 1 = 2 ⁒ e Ο€ ⁒ i / 3 ⁒ Ο‰ 3 = ( Ξ“ ⁑ ( 1 3 ) ) 3 2 ⁒ Ο€ ⁒ d 1 / 6 .

    There are 6 possible pairs ( 2 ⁒ Ο‰ 1 , 2 ⁒ Ο‰ 3 ), corresponding to the 6 rotations of a lattice of equilateral triangles. The equianharmonic case occurs when d > 0 and Ο‰ 1 > 0 .