About the Project

epsilon function

AdvancedHelp

(0.001 seconds)

1—10 of 63 matching pages

1: 22.16 Related Functions
§22.16(ii) Jacobi’s Epsilon Function
Integral Representations
Quasi-Addition and Quasi-Periodic Formulas
Relation to Theta Functions
See accompanying text
Figure 22.16.2: Jacobi’s epsilon function ( x , k ) for 0 x 10 π and k = 0.4 , 0.7 , 0.99 , 0.999999 . … Magnify
2: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . …
3: 33.14 Definitions and Basic Properties
§33.14(ii) Regular Solution f ( ϵ , ; r )
§33.14(iii) Irregular Solution h ( ϵ , ; r )
For nonzero values of ϵ and r the function h ( ϵ , ; r ) is defined by …
§33.14(iv) Solutions s ( ϵ , ; r ) and c ( ϵ , ; r )
The function s ( ϵ , ; r ) has the following properties: …
4: 22.21 Tables
§22.21 Tables
5: 22.18 Mathematical Applications
Ellipse
22.18.3 l ( u ) = a ( u , k ) ,
where ( u , k ) is Jacobi’s epsilon function22.16(ii)). …
6: 33.18 Limiting Forms for Large
§33.18 Limiting Forms for Large
7: 33.15 Graphics
§33.15 Graphics
§33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
§33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
See accompanying text
Figure 33.15.9: h ( ϵ , ; r ) with = 1 , 2 < ϵ < 2 , 15 < r < 15 . Magnify 3D Help
8: 33.20 Expansions for Small | ϵ |
§33.20(i) Case ϵ = 0
§33.20(ii) Power-Series in ϵ for the Regular Solution
§33.20(iii) Asymptotic Expansion for the Irregular Solution
where A ( ϵ , ) is given by (33.14.11), (33.14.12), and …
§33.20(iv) Uniform Asymptotic Expansions
9: 33.17 Recurrence Relations and Derivatives
§33.17 Recurrence Relations and Derivatives
33.17.1 ( + 1 ) r f ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) f ( ϵ , ; r ) + ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) = 0 ,
33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
33.17.3 ( + 1 ) r f ( ϵ , ; r ) = ( ( + 1 ) 2 r ) f ( ϵ , ; r ) ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) ,
33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
10: 22.20 Methods of Computation
Jacobi’s epsilon function can be computed from its representation (22.16.30) in terms of theta functions and complete elliptic integrals; compare §20.14. … …