About the Project

entire%20functions

AdvancedHelp

(0.004 seconds)

1—10 of 962 matching pages

1: 5.2 Definitions
§5.2(i) Gamma and Psi Functions
Euler’s Integral
It is a meromorphic function with no zeros, and with simple poles of residue ( 1 ) n / n ! at z = n . 1 / Γ ( z ) is entire, with simple zeros at z = n .
5.2.2 ψ ( z ) = Γ ( z ) / Γ ( z ) , z 0 , 1 , 2 , .
2: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
§20.2(ii) Periodicity and Quasi-Periodicity
For fixed τ , each θ j ( z | τ ) is an entire function of z with period 2 π ; θ 1 ( z | τ ) is odd in z and the others are even. … The theta functions are quasi-periodic on the lattice: …
§20.2(iv) z -Zeros
3: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … …
§15.2(ii) Analytic Properties
The principal branch of 𝐅 ( a , b ; c ; z ) is an entire function of a , b , and c . …
4: 9.12 Scorer Functions
§9.12 Scorer Functions
where … Gi ( z ) and Hi ( z ) are entire functions of z . …
Functions and Derivatives
5: 9.1 Special Notation
(For other notation see Notation for the Special Functions.)
k nonnegative integer, except in §9.9(iii).
The main functions treated in this chapter are the Airy functions Ai ( z ) and Bi ( z ) , and the Scorer functions Gi ( z ) and Hi ( z ) (also known as inhomogeneous Airy functions). Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
6: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
7: 23.15 Definitions
§23.15 Definitions
§23.15(i) General Modular Functions
Elliptic Modular Function
Dedekind’s Eta Function (or Dedekind Modular Function)
8: 5.15 Polygamma Functions
§5.15 Polygamma Functions
The functions ψ ( n ) ( z ) , n = 1 , 2 , , are called the polygamma functions. In particular, ψ ( z ) is the trigamma function; ψ ′′ , ψ ( 3 ) , ψ ( 4 ) are the tetra-, penta-, and hexagamma functions respectively. Most properties of these functions follow straightforwardly by differentiation of properties of the psi function. … For B 2 k see §24.2(i). …
9: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
§14.19(ii) Hypergeometric Representations
§14.19(iv) Sums
§14.19(v) Whipple’s Formula for Toroidal Functions
10: 11.9 Lommel Functions
§11.9 Lommel Functions
Reflection Formulas
§11.9(ii) Expansions in Series of Bessel Functions