About the Project

elliptical

AdvancedHelp

(0.001 seconds)

11—20 of 169 matching pages

11: 22.6 Elementary Identities
§22.6 Elementary Identities
§22.6(ii) Double Argument
§22.6(iii) Half Argument
§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
See §22.17.
12: 22.17 Moduli Outside the Interval [0,1]
§22.17 Moduli Outside the Interval [0,1]
§22.17(i) Real or Purely Imaginary Moduli
§22.17(ii) Complex Moduli
When z is fixed each of the twelve Jacobian elliptic functions is a meromorphic function of k 2 . …For proofs of these results and further information see Walker (2003).
13: 22.21 Tables
§22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. … Tables of theta functions (§20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.
14: 22.1 Special Notation
x , y real variables.
K , K K ( k ) , K ( k ) = K ( k ) (complete elliptic integrals of the first kind (§19.2(ii))).
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
15: 22.13 Derivatives and Differential Equations
§22.13(i) Derivatives
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
d d z ( sn z ) = cn z dn z d d z ( dc z )  = k 2 sc z nc z
§22.13(ii) First-Order Differential Equations
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
§22.13(iii) Second-Order Differential Equations
16: 22.14 Integrals
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
See §22.16(i) for am ( z , k ) . …
§22.14(ii) Indefinite Integrals of Powers of Jacobian Elliptic Functions
§22.14(iv) Definite Integrals
17: 22.5 Special Values
§22.5 Special Values
Table 22.5.2 gives sn ( z , k ) , cn ( z , k ) , dn ( z , k ) for other special values of z . …
§22.5(ii) Limiting Values of k
In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. …
18: 22.3 Graphics
§22.3(i) Real Variables: Line Graphs
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
§22.3(iii) Complex z ; Real k
§22.3(iv) Complex k
19: 22.7 Landen Transformations
§22.7(i) Descending Landen Transformation
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
§22.7(ii) Ascending Landen Transformation
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
§22.7(iii) Generalized Landen Transformations
20: 22.18 Mathematical Applications
§22.18 Mathematical Applications
§22.18(i) Lengths and Parametrization of Plane Curves
§22.18(iv) Elliptic Curves and the Jacobi–Abel Addition Theorem