About the Project

elliptic modular function

AdvancedHelp

(0.002 seconds)

1—10 of 28 matching pages

1: 23.16 Graphics
See accompanying text
Figure 23.16.2: Elliptic modular function λ ( x + i y ) for 0.25 x 0.25 , 0.005 y 0.1 . Magnify 3D Help
2: 23.1 Special Notation
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …
3: 23.19 Interrelations
23.19.1 λ ( τ ) = 16 ( η 2 ( 2 τ ) η ( 1 2 τ ) η 3 ( τ ) ) 8 ,
23.19.2 J ( τ ) = 4 27 ( 1 λ ( τ ) + λ 2 ( τ ) ) 3 ( λ ( τ ) ( 1 λ ( τ ) ) ) 2 ,
4: 23 Weierstrass Elliptic and Modular
Functions
Chapter 23 Weierstrass Elliptic and Modular Functions
5: 20.9 Relations to Other Functions
§20.9(ii) Elliptic Functions and Modular Functions
The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). As a function of τ , k 2 is the elliptic modular function; see Walker (1996, Chapter 7) and (23.15.2), (23.15.6). …
6: 23.18 Modular Transformations
Elliptic Modular Function
23.18.3 λ ( 𝒜 τ ) = λ ( τ ) ,
7: Victor H. Moll
8: Peter L. Walker
9: 23.17 Elementary Properties
23.17.4 λ ( τ ) = 16 q ( 1 8 q + 44 q 2 + ) ,
23.17.7 λ ( τ ) = 16 q n = 1 ( 1 + q 2 n 1 + q 2 n 1 ) 8 ,
10: 23.15 Definitions
Elliptic Modular Function
23.15.6 λ ( τ ) = θ 2 4 ( 0 , q ) θ 3 4 ( 0 , q ) ;