About the Project

elliptic integrals

AdvancedHelp

(0.013 seconds)

1—10 of 132 matching pages

1: 19.16 Definitions
§19.16(i) Symmetric Integrals
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function …The R -function is often used to make a unified statement of a property of several elliptic integrals. … …
§19.16(iii) Various Cases of R a ( 𝐛 ; 𝐳 )
2: 19.2 Definitions
§19.2(i) General Elliptic Integrals
is called an elliptic integral. …
§19.2(ii) Legendre’s Integrals
The principal values of K ( k ) and E ( k ) are even functions. …
§19.2(iii) Bulirsch’s Integrals
3: 36.2 Catastrophes and Canonical Integrals
Canonical Integrals
Ψ ( E ) ( 𝟎 ) = 1 3 π Γ ( 1 6 ) = 3.28868 ,
36.2.25 Ψ ( E ) ( x , y , z ) = Ψ ( E ) ( x , y , z ) .
36.2.26 Ψ ( E ) ( 1 2 x 3 2 y , ± 3 2 x 1 2 y , z ) = Ψ ( E ) ( x , y , z ) ,
36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
4: 29.10 Lamé Functions with Imaginary Periods
𝐸𝑐 ν 2 m ( i ( z K i K ) , k 2 ) ,
𝐸𝑐 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
𝐸𝑠 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
The first and the fourth functions have period 2 i K ; the second and the third have period 4 i K . …
5: 29.13 Graphics
See accompanying text
Figure 29.13.5: 𝑢𝐸 4 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.6: 𝑢𝐸 4 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.21: | 𝑢𝐸 4 1 ( x + i y , 0.1 ) | for 3 K x 3 K , 0 y 2 K . K = 1.61244 , K = 2.57809 . Magnify 3D Help
See accompanying text
Figure 29.13.22: | 𝑢𝐸 4 1 ( x + i y , 0.5 ) | for 3 K x 3 K , 0 y 2 K . K = K = 1.85407 . Magnify 3D Help
See accompanying text
Figure 29.13.23: | 𝑢𝐸 4 1 ( x + i y , 0.9 ) | for 3 K x 3 K , 0 y 2 K . K = 2.57809 , K = 1.61244 . Magnify 3D Help
6: 22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
7: 19.4 Derivatives and Differential Equations
§19.4(i) Derivatives
d ( E ( k ) k 2 K ( k ) ) d k = k K ( k ) ,
d E ( k ) d k = E ( k ) K ( k ) k ,
d ( E ( k ) K ( k ) ) d k = k E ( k ) k 2 ,
If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . …
8: 19.6 Special Cases
§19.6(i) Complete Elliptic Integrals
K ( 0 ) = E ( 0 ) = K ( 1 ) = E ( 1 ) = 1 2 π ,
K ( 1 ) = K ( 0 ) = ,
§19.6(ii) F ( ϕ , k )
§19.6(iii) E ( ϕ , k )
9: 19.7 Connection Formulas
K ( 1 / k ) = k ( K ( k ) i K ( k ) ) ,
K ( 1 / k ) = k ( K ( k ) ± i K ( k ) ) ,
E ( ϕ , k 1 ) = ( E ( β , k ) k 2 F ( β , k ) ) / k ,
§19.7(iii) Change of Parameter of Π ( ϕ , α 2 , k )
10: 29.14 Orthogonality
29.14.2 g , h = 0 K 0 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
29.14.3 w ( s , t ) = sn 2 ( K + i t , k ) sn 2 ( s , k ) .
29.14.4 𝑠𝐸 2 n + 1 m ( s , k 2 ) 𝑠𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.5 𝑐𝐸 2 n + 1 m ( s , k 2 ) 𝑐𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.11 g , h = 0 4 K 0 2 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,