About the Project

electric%20particle%20field

AdvancedHelp

(0.004 seconds)

1—10 of 135 matching pages

1: Bibliography I
  • IEEE (2008) IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2015) IEEE Standard for Interval Arithmetic: IEEE Std 1788-2015. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2018) IEEE Standard for Interval Arithmetic: IEEE Std 1788.1-2017. The Institute of Electrical and Electronics Engineers, Inc..
  • IEEE (2019) IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019. The Institute of Electrical and Electronics Engineers, Inc..
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • 2: Bibliography K
  • A. V. Kashevarov (1998) The second Painlevé equation in electric probe theory. Some numerical solutions. Zh. Vychisl. Mat. Mat. Fiz. 38 (6), pp. 992–1000 (Russian).
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • E. J. Konopinski (1981) Electromagnetic Fields and Relativistic Particles. International Series in Pure and Applied Physics, McGraw-Hill Book Co., New York.
  • 3: Wolter Groenevelt
    Groenevelt’s research interests is in special functions and orthogonal polynomials and their relations with representation theory and interacting particle systems. As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    4: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • R. Becker and F. Sauter (1964) Electromagnetic Fields and Interactions. Vol. I, Blaisdell, New York.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: 19.33 Triaxial Ellipsoids
    If a conducting ellipsoid with semiaxes a , b , c bears an electric charge Q , then the equipotential surfaces in the exterior region are confocal ellipsoids: …and the electric capacity C = Q / V ( 0 ) is given by … Let a homogeneous magnetic ellipsoid with semiaxes a , b , c , volume V = 4 π a b c / 3 , and susceptibility χ be placed in a previously uniform magnetic field H parallel to the principal axis with semiaxis c . The external field and the induced magnetization together produce a uniform field inside the ellipsoid with strength H / ( 1 + L c χ ) , where L c is the demagnetizing factor, given in cgs units by … The same result holds for a homogeneous dielectric ellipsoid in an electric field. …
    7: 31.15 Stieltjes Polynomials
    The system (31.15.2) determines the z k as the points of equilibrium of n movable (interacting) particles with unit charges in a field of N particles with the charges γ j / 2 fixed at a j . … …
    8: 33.22 Particle Scattering and Atomic and Molecular Spectra
    §33.22 Particle Scattering and Atomic and Molecular Spectra
    With e denoting here the elementary charge, the Coulomb potential between two point particles with charges Z 1 e , Z 2 e and masses m 1 , m 2 separated by a distance s is V ( s ) = Z 1 Z 2 e 2 / ( 4 π ε 0 s ) = Z 1 Z 2 α c / s , where Z j are atomic numbers, ε 0 is the electric constant, α is the fine structure constant, and is the reduced Planck’s constant. …
    §33.22(iv) Klein–Gordon and Dirac Equations
    The relativistic motion of spinless particles in a Coulomb field, as encountered in pionic atoms and pion-nucleon scattering (Backenstoss (1970)) is described by a Klein–Gordon equation equivalent to (33.2.1); see Barnett (1981a). The motion of a relativistic electron in a Coulomb field, which arises in the theory of the electronic structure of heavy elements (Johnson (2007)), is described by a Dirac equation. …
    9: 8 Incomplete Gamma and Related
    Functions
    10: 28 Mathieu Functions and Hill’s Equation