About the Project
NIST

dual Hahn polynomials

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) .
Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
p n ( x ) x = λ ( y ) Orthogonality range for y Constraints
S n ( x ; a , b , c ) y 2 ( 0 , ) ( a , b , c ) > 0 ; nonreal parameters in conjugate pairs
18.25.6 p n ( x ) = S n ( x ; a 1 , a 2 , a 3 ) ,
Table 18.25.2 provides the leading coefficients k n 18.2(iii)) for the Wilson, continuous dual Hahn, Racah, and dual Hahn polynomials. …
2: 18.26 Wilson Class: Continued
18.26.5 lim d W n ( x ; a , b , c , d ) ( a + d ) n = S n ( x ; a , b , c ) .
18.26.8 lim t S n ( ( x - t ) 2 ; λ + i t , λ - i t , t cot ϕ ) / t n = n ! ( csc ϕ ) n P n ( λ ) ( x ; ϕ ) .
18.26.9 lim β R n ( x ; - N - 1 , β , γ , δ ) = R n ( x ; γ , δ , N ) .
18.26.11 lim t R n ( x ( x + t + 1 ) ; p t , ( 1 - p ) t , N ) = K n ( x ; p , N ) .
18.26.13 lim N R n ( r ( x ; β , c , N ) ; β - 1 , c - 1 ( 1 - c ) N , N ) = M n ( x ; β , c ) .
3: 18.21 Hahn Class: Interrelations
18.21.1 Q n ( x ; α , β , N ) = R x ( n ( n + α + β + 1 ) ; α , β , N ) , n , x = 0 , 1 , , N .
For the dual Hahn polynomial R n ( x ; γ , δ , N ) see §18.25. …
4: 18.1 Notation
( z 1 , , z k ; q ) = ( z 1 ; q ) ( z k ; q ) .