About the Project

double gamma function

AdvancedHelp

(0.004 seconds)

1—10 of 44 matching pages

1: 5.17 Barnes’ G -Function (Double Gamma Function)
§5.17 Barnes’ G -Function (Double Gamma Function)
β–Ί
5.17.2 G ⁑ ( n ) = ( n 2 ) ! ⁒ ( n 3 ) ! ⁒ β‹― ⁒ 1 ! , n = 2 , 3 , .
β–Ί
5.17.3 G ⁑ ( z + 1 ) = ( 2 ⁒ Ο€ ) z / 2 ⁒ exp ⁑ ( 1 2 ⁒ z ⁒ ( z + 1 ) 1 2 ⁒ Ξ³ ⁒ z 2 ) ⁒ k = 1 ( ( 1 + z k ) k ⁒ exp ⁑ ( z + z 2 2 ⁒ k ) ) .
β–Ί
5.17.4 Ln ⁑ G ⁑ ( z + 1 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 2 ⁒ Ο€ ) 1 2 ⁒ z ⁒ ( z + 1 ) + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) 0 z Ln ⁑ Ξ“ ⁑ ( t + 1 ) ⁒ d t .
β–Ί
5.17.5 Ln ⁑ G ⁑ ( z + 1 ) 1 4 ⁒ z 2 + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) ( 1 2 ⁒ z ⁒ ( z + 1 ) + 1 12 ) ⁒ ln ⁑ z ln ⁑ A + k = 1 B 2 ⁒ k + 2 2 ⁒ k ⁒ ( 2 ⁒ k + 1 ) ⁒ ( 2 ⁒ k + 2 ) ⁒ z 2 ⁒ k .
2: 5.1 Special Notation
β–Ί
3: Bibliography F
β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • C. Ferreira and J. L. López (2001) An asymptotic expansion of the double gamma function. J. Approx. Theory 111 (2), pp. 298–314.
  • 4: Bibliography M
    β–Ί
  • C. Mortici (2013b) Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Modelling 57 (5-6), pp. 1360–1363.
  • 5: 5.4 Special Values and Extrema
    β–Ί
    5.4.2 n !! = { 2 1 2 ⁒ n ⁒ Ξ“ ⁑ ( 1 2 ⁒ n + 1 ) , n ⁒  even , Ο€ 1 2 ⁒ 2 1 2 ⁒ n + 1 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ n + 1 ) , n ⁒  odd .
    6: Bibliography Q
    β–Ί
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • β–Ί
  • F. Qi (2008) A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214 (2), pp. 610–616.
  • β–Ί
  • W.-Y. Qiu and R. Wong (2000) Uniform asymptotic expansions of a double integral: Coalescence of two stationary points. Proc. Roy. Soc. London Ser. A 456, pp. 407–431.
  • β–Ί
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J Ξ½ ⁒ ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 7: 8.13 Zeros
    §8.13 Zeros
    β–ΊThe function Ξ³ ⁑ ( a , x ) has no real zeros for a 0 . … β–ΊWhen 5 a 4 the behavior of the x -zeros as functions of a can be seen by taking the slice Ξ³ ⁑ ( a , x ) = 0 of the surface depicted in Figure 8.3.6. … β–ΊAs x increases the positive zeros coalesce to form a double zero at ( a n , x n ). The values of the first six double zeros are given to 5D in Table 8.13.1. …
    8: 21.5 Modular Transformations
    β–Ί
    21.5.5 πšͺ = [ 𝐀 𝟎 g 𝟎 g [ 𝐀 1 ] T ] ΞΈ ⁑ ( 𝐀 ⁒ 𝐳 | 𝐀 ⁒ 𝛀 ⁒ 𝐀 T ) = ΞΈ ⁑ ( 𝐳 | 𝛀 ) .
    β–Ί
    21.5.6 πšͺ = [ 𝐈 g 𝐁 𝟎 g 𝐈 g ] ΞΈ ⁑ ( 𝐳 | 𝛀 + 𝐁 ) = ΞΈ ⁑ ( 𝐳 | 𝛀 ) .
    β–Ί
    21.5.7 πšͺ = [ 𝐈 g 𝐁 𝟎 g 𝐈 g ] ΞΈ ⁑ ( 𝐳 | 𝛀 + 𝐁 ) = ΞΈ ⁑ ( 𝐳 + 1 2 ⁒ diag ⁒ 𝐁 | 𝛀 ) .
    9: 16.15 Integral Representations and Integrals
    β–Ί
    16.15.3 F 3 ⁑ ( Ξ± , Ξ± ; Ξ² , Ξ² ; Ξ³ ; x , y ) = Ξ“ ⁑ ( Ξ³ ) Ξ“ ⁑ ( Ξ² ) ⁒ Ξ“ ⁑ ( Ξ² ) ⁒ Ξ“ ⁑ ( Ξ³ Ξ² Ξ² ) ⁒ ∬ Ξ” u Ξ² 1 ⁒ v Ξ² 1 ⁒ ( 1 u v ) Ξ³ Ξ² Ξ² 1 ( 1 u ⁒ x ) Ξ± ⁒ ( 1 v ⁒ y ) Ξ± ⁒ d u ⁒ d v , ⁑ ( Ξ³ Ξ² Ξ² ) > 0 , ⁑ Ξ² > 0 , ⁑ Ξ² > 0 ,
    10: 15.6 Integral Representations
    §15.6 Integral Representations
    β–ΊIn (15.6.1) all functions in the integrand assume their principal values. … β–ΊIn (15.6.6) the integration contour separates the poles of Ξ“ ⁑ ( a + t ) and Ξ“ ⁑ ( b + t ) from those of Ξ“ ⁑ ( t ) , and ( z ) t has its principal value. β–ΊIn (15.6.7) the integration contour separates the poles of Ξ“ ⁑ ( a + t ) and Ξ“ ⁑ ( b + t ) from those of Ξ“ ⁑ ( c a b t ) and Ξ“ ⁑ ( t ) , and ( 1 z ) t has its principal value. β–ΊIn each of (15.6.8) and (15.6.9) all functions in the integrand assume their principal values. …