About the Project

double

AdvancedHelp

(0.001 seconds)

1—10 of 93 matching pages

1: 10.53 Power Series
β–Ί
10.53.1 𝗃 n ⁑ ( z ) = z n ⁒ k = 0 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ n + 2 ⁒ k + 1 ) !! ,
β–Ί
10.53.2 𝗒 n ⁑ ( z ) = 1 z n + 1 ⁒ k = 0 n ( 2 ⁒ n 2 ⁒ k 1 ) !! ⁒ ( 1 2 ⁒ z 2 ) k k ! + ( 1 ) n + 1 z n + 1 ⁒ k = n + 1 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ k 2 ⁒ n 1 ) !! .
β–Ί
10.53.3 𝗂 n ( 1 ) ⁑ ( z ) = z n ⁒ k = 0 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ n + 2 ⁒ k + 1 ) !! ,
β–Ί
10.53.4 𝗂 n ( 2 ) ⁑ ( z ) = ( 1 ) n z n + 1 ⁒ k = 0 n ( 2 ⁒ n 2 ⁒ k 1 ) !! ⁒ ( 1 2 ⁒ z 2 ) k k ! + 1 z n + 1 ⁒ k = n + 1 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ k 2 ⁒ n 1 ) !! .
2: Bibliography Q
β–Ί
  • F. Qi (2008) A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214 (2), pp. 610–616.
  • β–Ί
  • W.-Y. Qiu and R. Wong (2000) Uniform asymptotic expansions of a double integral: Coalescence of two stationary points. Proc. Roy. Soc. London Ser. A 456, pp. 407–431.
  • 3: Gerhard Wolf
    β–Ί Schmidt) of the Chapter Double Confluent Heun Equation in the book Heun’s Differential Equations (A. …
    4: 10.72 Mathematical Applications
    β–ΊIf f ⁑ ( z ) has a double zero z 0 , or more generally z 0 is a zero of order m , m = 2 , 3 , 4 , , then uniform asymptotic approximations (but not expansions) can be constructed in terms of Bessel functions, or modified Bessel functions, of order 1 / ( m + 2 ) . The number m can also be replaced by any real constant Ξ» ( > 2 ) in the sense that ( z z 0 ) Ξ» f ⁑ ( z ) is analytic and nonvanishing at z 0 ; moreover, g ⁑ ( z ) is permitted to have a single or double pole at z 0 . The order of the approximating Bessel functions, or modified Bessel functions, is 1 / ( Ξ» + 2 ) , except in the case when g ⁑ ( z ) has a double pole at z 0 . … β–Ί
    §10.72(iii) Differential Equations with a Double Pole and a Movable Turning Point
    β–ΊIn (10.72.1) assume f ⁑ ( z ) = f ⁑ ( z , Ξ± ) and g ⁑ ( z ) = g ⁑ ( z , Ξ± ) depend continuously on a real parameter Ξ± , f ⁑ ( z , Ξ± ) has a simple zero z = z 0 ⁑ ( Ξ± ) and a double pole z = 0 , except for a critical value Ξ± = a , where z 0 ⁑ ( a ) = 0 . …
    5: 27.5 Inversion Formulas
    β–Ί
    27.5.3 g ⁑ ( n ) = d | n f ⁑ ( d ) ⟺ f ⁑ ( n ) = d | n g ⁑ ( d ) ⁒ μ ⁑ ( n d ) .
    β–Ί
    27.5.4 n = d | n Ο• ⁑ ( d ) ⟺ Ο• ⁑ ( n ) = d | n d ⁒ ΞΌ ⁑ ( n d ) ,
    β–Ί
    27.5.6 G ⁑ ( x ) = n x F ⁑ ( x n ) ⟺ F ⁑ ( x ) = n x μ ⁑ ( n ) ⁒ G ⁑ ( x n ) ,
    β–Ί
    27.5.7 G ⁑ ( x ) = m = 1 F ⁑ ( m ⁒ x ) m s ⟺ F ⁑ ( x ) = m = 1 μ ⁑ ( m ) ⁒ G ⁑ ( m ⁒ x ) m s ,
    β–Ί
    27.5.8 g ⁑ ( n ) = d | n f ⁑ ( d ) ⟺ f ⁑ ( n ) = d | n ( g ⁑ ( n d ) ) μ ⁑ ( d ) .
    6: 5.17 Barnes’ G -Function (Double Gamma Function)
    §5.17 Barnes’ G -Function (Double Gamma Function)
    β–Ί
    5.17.2 G ⁑ ( n ) = ( n 2 ) ! ⁒ ( n 3 ) ! ⁒ β‹― ⁒ 1 ! , n = 2 , 3 , .
    β–Ί
    5.17.3 G ⁑ ( z + 1 ) = ( 2 ⁒ Ο€ ) z / 2 ⁒ exp ⁑ ( 1 2 ⁒ z ⁒ ( z + 1 ) 1 2 ⁒ Ξ³ ⁒ z 2 ) ⁒ k = 1 ( ( 1 + z k ) k ⁒ exp ⁑ ( z + z 2 2 ⁒ k ) ) .
    β–Ί
    5.17.4 Ln ⁑ G ⁑ ( z + 1 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 2 ⁒ Ο€ ) 1 2 ⁒ z ⁒ ( z + 1 ) + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) 0 z Ln ⁑ Ξ“ ⁑ ( t + 1 ) ⁒ d t .
    β–Ί
    5.17.5 Ln ⁑ G ⁑ ( z + 1 ) 1 4 ⁒ z 2 + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) ( 1 2 ⁒ z ⁒ ( z + 1 ) + 1 12 ) ⁒ ln ⁑ z ln ⁑ A + k = 1 B 2 ⁒ k + 2 2 ⁒ k ⁒ ( 2 ⁒ k + 1 ) ⁒ ( 2 ⁒ k + 2 ) ⁒ z 2 ⁒ k .
    7: 35.10 Methods of Computation
    β–ΊOther methods include numerical quadrature applied to double and multiple integral representations. …
    8: 10.41 Asymptotic Expansions for Large Order
    β–Ί
    §10.41(iv) Double Asymptotic Properties
    β–Ί
    §10.41(v) Double Asymptotic Properties (Continued)
    9: 10.52 Limiting Forms
    β–Ί
    10.52.1 𝗃 n ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) z n / ( 2 ⁒ n + 1 ) !! ,
    β–Ί
    10: 5.1 Special Notation
    β–Ί