About the Project

distributional derivative

AdvancedHelp

(0.002 seconds)

11—20 of 22 matching pages

11: 9.13 Generalized Airy Functions
β–Ί
9.13.1 d 2 w d z 2 = z n ⁒ w , n = 1 , 2 , 3 , ,
β–ΊThe distribution in β„‚ and asymptotic properties of the zeros of A n ⁑ ( z ) , A n ⁑ ( z ) , B n ⁑ ( z ) , and B n ⁑ ( z ) are investigated in Swanson and Headley (1967) and Headley and Barwell (1975). … β–Ί
9.13.13 d 2 w d t 2 = 1 4 ⁒ m 2 ⁒ t m 2 ⁒ w ,
β–Ί
9.13.17 d 2 w d t 2 = 1 4 ⁒ m 2 ⁒ t m 2 ⁒ w , m even,
β–Ί
9.13.31 d 3 w d z 3 z ⁒ d w d z + ( p 1 ) ⁒ w = 0 ,
12: 3.8 Nonlinear Equations
β–ΊFor other efficient derivative-free methods, see Le (1985). … β–ΊFor describing the distribution of complex zeros of solutions of linear homogeneous second-order differential equations by methods based on the Liouville–Green (WKB) approximation, see Segura (2013). … β–Ί β–Ί
3.8.14 d z d a j = z j f ⁒ ( z ) .
β–Ί
3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ⁒ ) × 10 7 .
13: 20.13 Physical Applications
β–Ί
20.13.1 ΞΈ ⁑ ( z | Ο„ ) / Ο„ = ΞΊ ⁒ 2 ΞΈ ⁑ ( z | Ο„ ) / z 2 ,
β–Ί
20.13.2 θ / t = α ⁒ 2 θ / z 2 ,
β–ΊIn the singular limit ⁑ Ο„ 0 + , the functions ΞΈ j ⁑ ( z | Ο„ ) , j = 1 , 2 , 3 , 4 , become integral kernels of Feynman path integrals (distribution-valued Green’s functions); see Schulman (1981, pp. 194–195). …
14: Bibliography K
β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1985b) Calculation of the complex zeros of Hankel functions and their derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 25 (11), pp. 1628–1643, 1741.
  • β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1986) On multiple zeros of derivatives of Bessel’s cylindrical functions. Dokl. Akad. Nauk SSSR 288 (2), pp. 285–288 (Russian).
  • β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1987) On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions. Zh. Vychisl. Mat. i Mat. Fiz. 27 (11), pp. 1628–1639, 1758.
  • β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1988) Multiple complex zeros of derivatives of the cylindrical Bessel functions. Dokl. Akad. Nauk SSSR 299 (3), pp. 614–618 (Russian).
  • β–Ί
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • 15: 14.30 Spherical and Spheroidal Harmonics
    β–Ί
    14.30.3 Y l , m ⁑ ( ΞΈ , Ο• ) = ( 1 ) l + m 2 l ⁒ l ! ⁒ ( ( l m ) ! ⁒ ( 2 ⁒ l + 1 ) 4 ⁒ Ο€ ⁒ ( l + m ) ! ) 1 / 2 ⁒ e i ⁒ m ⁒ Ο• ⁒ ( sin ⁑ ΞΈ ) m ⁒ ( d d ( cos ⁑ ΞΈ ) ) l + m ⁑ ( sin ⁑ ΞΈ ) 2 ⁒ l .
    β–Ί
    Distributional Completeness
    β–Ί
    14.30.10 1 ρ 2 ⁒ ρ ⁑ ( ρ 2 ⁒ W ρ ) + 1 ρ 2 ⁒ sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ W ΞΈ ) + 1 ρ 2 ⁒ sin 2 ⁑ ΞΈ ⁒ 2 W Ο• 2 = 0 ,
    β–Ί
    14.30.12 L 2 = ℏ 2 ⁒ ( 1 sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ ΞΈ ) + 1 sin 2 ⁑ ΞΈ ⁒ 2 Ο• 2 ) ,
    β–Ί
    14.30.13 L z = i ⁒ ℏ ⁒ Ο• ;
    16: Bibliography H
    β–Ί
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ΞΆ ⁒ ( s ) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • β–Ί
  • Harvard University (1945) Tables of the Modified Hankel Functions of Order One-Third and of their Derivatives. Harvard University Press, Cambridge, MA.
  • β–Ί
  • V. B. Headley and V. K. Barwell (1975) On the distribution of the zeros of generalized Airy functions. Math. Comp. 29 (131), pp. 863–877.
  • β–Ί
  • G. W. Hill (1970) Algorithm 395: Student’s t-distribution. Comm. ACM 13 (10), pp. 617–619.
  • β–Ί
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I 1 ⁒ ( x ) / I 0 ⁒ ( x ) , I 1.5 ⁒ ( x ) / I 0.5 ⁒ ( x ) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • 17: 31.15 Stieltjes Polynomials
    β–Ί
    31.15.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) ⁒ d w d z + Φ ⁑ ( z ) j = 1 N ( z a j ) ⁒ w = 0 ,
    β–ΊIf t k is a zero of the Van Vleck polynomial V ⁑ ( z ) , corresponding to an n th degree Stieltjes polynomial S ⁑ ( z ) , and z 1 , z 2 , , z n 1 are the zeros of S ⁑ ( z ) (the derivative of S ⁑ ( z ) ), then t k is either a zero of S ⁑ ( z ) or a solution of the equation … β–Ίthen there are exactly ( n + N 2 N 2 ) polynomials S ⁑ ( z ) , each of which corresponds to each of the ( n + N 2 N 2 ) ways of distributing its n zeros among N 1 intervals ( a j , a j + 1 ) , j = 1 , 2 , , N 1 . …
    18: 1.4 Calculus of One Variable
    β–Ί
    §1.4(iii) Derivatives
    β–Ί
    Higher Derivatives
    β–Ί
    Chain Rule
    β–Ί
    Leibniz’s Formula
    β–ΊDelta distributions and Dirac Ξ΄ -functions are discussed in §§1.16(iii), 1.16(iv) and 1.17. …
    19: Bibliography S
    β–Ί
  • M. E. Sherry (1959) The zeros and maxima of the Airy function and its first derivative to 25 significant figures. Report AFCRC-TR-59-135, ASTIA Document No. AD214568 Air Research and Development Command, U.S. Air Force, Bedford, MA.
  • β–Ί
  • R. Spigler (1980) Some results on the zeros of cylindrical functions and of their derivatives. Rend. Sem. Mat. Univ. Politec. Torino 38 (1), pp. 67–85 (Italian. English summary).
  • β–Ί
  • R. S. Strichartz (1994) A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
  • β–Ί
  • R. Szmytkowski (2006) On the derivative of the Legendre function of the first kind with respect to its degree. J. Phys. A 39 (49), pp. 15147–15172.
  • β–Ί
  • R. Szmytkowski (2009) On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46 (1), pp. 231–260.
  • 20: Bibliography B
    β–Ί
  • J. Baik, P. Deift, and K. Johansson (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (4), pp. 1119–1178.
  • β–Ί
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • β–Ί
  • A. R. Barnett (1982) COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method. Comput. Phys. Comm. 27, pp. 147–166.
  • β–Ί
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • β–Ί
  • Yu. A. Brychkov and K. O. Geddes (2005) On the derivatives of the Bessel and Struve functions with respect to the order. Integral Transforms Spec. Funct. 16 (3), pp. 187–198.