About the Project

distributional%20derivative

AdvancedHelp

(0.002 seconds)

7 matching pages

1: 10.73 Physical Applications
β–ΊLaplace’s equation governs problems in heat conduction, in the distribution of potential in an electrostatic field, and in hydrodynamics in the irrotational motion of an incompressible fluid. … β–Ί
10.73.1 2 V = 1 r ⁒ r ⁑ ( r ⁒ V r ) + 1 r 2 ⁒ 2 V Ο• 2 + 2 V z 2 = 0 ,
β–ΊSee Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … β–Ί
10.73.4 ( 2 + k 2 ) ⁒ f = 1 ρ 2 ⁒ ρ ⁑ ( ρ 2 ⁒ f ρ ) + 1 ρ 2 ⁒ sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ f ΞΈ ) + 1 ρ 2 ⁒ sin 2 ⁑ ΞΈ ⁒ 2 f Ο• 2 + k 2 ⁒ f .
β–ΊThe analysis of the current distribution in circular conductors leads to the Kelvin functions ber ⁑ x , bei ⁑ x , ker ⁑ x , and kei ⁑ x . …
2: Bibliography K
β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 3: 3.8 Nonlinear Equations
    β–ΊFor other efficient derivative-free methods, see Le (1985). … β–ΊFor describing the distribution of complex zeros of solutions of linear homogeneous second-order differential equations by methods based on the Liouville–Green (WKB) approximation, see Segura (2013). … β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . … β–Ί
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ⁒ ) × 10 7 .
    4: Bibliography C
    β–Ί
  • B. C. Carlson (1961a) Ellipsoidal distributions of charge or mass. J. Mathematical Phys. 2, pp. 441–450.
  • β–Ί
  • R. Chattamvelli and R. Shanmugam (1997) Algorithm AS 310. Computing the non-central beta distribution function. Appl. Statist. 46 (1), pp. 146–156.
  • β–Ί
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • β–Ί
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering. Molecular Physics 37 (6), pp. 1703–1712.
  • β–Ί
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 (4), pp. 1270–1285.
  • 5: Bibliography W
    β–Ί
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • β–Ί
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • β–Ί
  • J. Wishart (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, pp. 32–52.
  • 6: 9.9 Zeros
    β–Ί
    §9.9(i) Distribution and Notation
    β–ΊThey are denoted by a k , a k , b k , b k , respectively, arranged in ascending order of absolute value for k = 1 , 2 , . β–ΊFor the distribution in β„‚ of the zeros of Ai ⁑ ( z ) Οƒ ⁒ Ai ⁑ ( z ) , where Οƒ is an arbitrary complex constant, see MuraveΔ­ (1976) and Gil and Segura (2014). … β–Ί
    §9.9(iii) Derivatives With Respect to k
    β–ΊFor error bounds for the asymptotic expansions of a k , b k , a k , and b k see Pittaluga and Sacripante (1991), and a conjecture given in Fabijonas and Olver (1999). …
    7: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • J. Baik, P. Deift, and K. Johansson (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (4), pp. 1119–1178.
  • β–Ί
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.