About the Project

discrete

AdvancedHelp

(0.000 seconds)

11—20 of 35 matching pages

11: 24.19 Methods of Computation
  • A method related to “Stickelberger codes” is applied in Buhler et al. (2001); in particular, it allows for an efficient search for the irregular pairs ( 2 n , p ) . Discrete Fourier transforms are used in the computations. See also Crandall (1996, pp. 120–124).

  • 12: Bibliography F
  • P. Flajolet and A. Odlyzko (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 (2), pp. 216–240.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • A. S. Fokas, A. R. Its, and A. V. Kitaev (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142 (2), pp. 313–344.
  • A. S. Fokas, A. R. Its, and X. Zhou (1992) Continuous and Discrete Painlevé Equations. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
  • 13: 3.11 Approximation Techniques
    Now suppose that X k = 0 when k , that is, the functions ϕ k ( x ) are orthogonal with respect to weighted summation on the discrete set x 1 , x 2 , , x J . …
    Example. The Discrete Fourier Transform
    is called a discrete Fourier transform pair. … The direct computation of the discrete Fourier transform (3.11.38), that is, of …
    14: 31.4 Solutions Analytic at Two Singularities: Heun Functions
    For an infinite set of discrete values q m , m = 0 , 1 , 2 , , of the accessory parameter q , the function H ( a , q ; α , β , γ , δ ; z ) is analytic at z = 1 , and hence also throughout the disk | z | < a . …
    15: Bibliography N
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • M. Noumi and Y. Yamada (1998) Affine Weyl groups, discrete dynamical systems and Painlevé equations. Comm. Math. Phys. 199 (2), pp. 281–295.
  • 16: Bibliography H
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • 17: 18.3 Definitions
    In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : … For another version of the discrete orthogonality property of the polynomials T n ( x ) see (3.11.9). … It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
    18: 18.25 Wilson Class: Definitions
    The Wilson class consists of two discrete families (Racah and dual Hahn) and two continuous families (Wilson and continuous dual Hahn). …
    §18.25(iii) Weights and Normalizations: Discrete Cases
    19: 18.38 Mathematical Applications
    Quadrature “Extended” to Pseudo-Spectral (DVR) Representations of Operators in One and Many Dimensions
    The basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. …
    20: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • GAP (website) The GAP Group, Centre for Interdisciplinary Research in Computational Algebra, University of St. Andrews, United Kingdom.