About the Project

discrete Fourier transform

AdvancedHelp

(0.002 seconds)

10 matching pages

1: 3.11 Approximation Techniques
Example. The Discrete Fourier Transform
is called a discrete Fourier transform pair. … The direct computation of the discrete Fourier transform (3.11.38), that is, of …
2: 24.19 Methods of Computation
  • A method related to “Stickelberger codes” is applied in Buhler et al. (2001); in particular, it allows for an efficient search for the irregular pairs ( 2 n , p ) . Discrete Fourier transforms are used in the computations. See also Crandall (1996, pp. 120–124).

  • 3: 18.3 Definitions
    It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
    4: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • 5: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • G. Wolf (2008) On the asymptotic behavior of the Fourier coefficients of Mathieu functions. J. Res. Nat. Inst. Standards Tech. 113 (1), pp. 11–15.
  • R. Wong and J. F. Lin (1978) Asymptotic expansions of Fourier transforms of functions with logarithmic singularities. J. Math. Anal. Appl. 64 (1), pp. 173–180.
  • R. Wong and H. Y. Zhang (2009b) On the connection formulas of the third Painlevé transcendent. Discrete Contin. Dyn. Syst. 23 (1-2), pp. 541–560.
  • 6: Bibliography K
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • T. W. Körner (1989) Fourier Analysis. 2nd edition, Cambridge University Press, Cambridge.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 7: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    The analogous orthonormality is …
    §1.18(v) Point Spectra and Eigenfunction Expansions
    For f ( x ) even in x this yields the Fourier cosine transform pair (1.14.9) & (1.14.11), and for f ( x ) odd the Fourier sine transform pair (1.14.10) & (1.14.12). …
    8: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • M. J. Lighthill (1958) An Introduction to Fourier Analysis and Generalised Functions. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.
  • 9: Bibliography Z
  • D. Zeilberger and D. M. Bressoud (1985) A proof of Andrews’ q -Dyson conjecture. Discrete Math. 54 (2), pp. 201–224.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • Q. Zheng (1997) Generalized Watson Transforms and Applications to Group Representations. Ph.D. Thesis, University of Vermont, Burlington,VT.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • 10: Bibliography F
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • P. Flajolet and A. Odlyzko (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 (2), pp. 216–240.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • A. S. Fokas, A. R. Its, and A. V. Kitaev (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142 (2), pp. 313–344.
  • A. S. Fokas, A. R. Its, and X. Zhou (1992) Continuous and Discrete Painlevé Equations. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.