About the Project

dimension

AdvancedHelp

(0.001 seconds)

1—10 of 22 matching pages

1: 30.16 Methods of Computation
30.16.2 α j , d + 1 α j , d ,
30.16.4 α p , d λ n m ( γ 2 ) = O ( γ 4 d 4 2 d + 1 ( ( m + 2 d 1 ) ! ( m + 2 d + 1 ) ! ) 2 ) , d .
30.16.7 j = 1 d e j , d 2 ( n + m + 2 j 2 p ) ! ( n m + 2 j 2 p ) ! 1 2 n + 4 j 4 p + 1 = ( n + m ) ! ( n m ) ! 1 2 n + 1 .
30.16.8 a n , k m ( γ 2 ) = lim d e k + p , d ,
2: 37.11 Spherical Harmonics
In the case of dimension d = 3 see §14.30 for spherical harmonics and (1.5.17) for the Laplacian. …
37.11.3 𝕊 d 1 = { 𝐱 d x 1 2 + + x d 2 = 1 } , d 2 .
Its dimension is
37.11.5 N n d = dim n 0 , d = dim n d = 2 n + d 2 n + d 2 ( n + d 2 n ) , n 0 , d 2 .
Reduction to Lower Dimension
3: About Color Map
We use color to augment these vizualizations, either to reinforce the recognition of the height, or to convey an extra dimension to represent the phase of complex valued functions. …
4: 37.13 General Orthogonal Polynomials of d Variables
37.13.8 R Y , k , n ( r ξ ) = p k ( n 2 k + 1 2 d 1 ) ( r 2 ) r n 2 k Y ( ξ ) , 0 k 1 2 n , Y n 2 k 0 , d , r 0 , ξ 𝕊 d 1 .
37.13.9 d R Y 1 , k , n ( 𝐱 ) R Y 2 , k , n ( 𝐱 ) W ( 𝐱 ) d 𝐱 = 1 2 ω d 0 ( p k ( n 2 k + 1 2 d 1 ) ( x ) ) 2 w ( x ) x n 2 k + 1 2 d 1 d x Y 1 , Y 2 𝕊 d 1 , 0 k 1 2 n , Y 1 , Y 2 n 2 k 0 , d .
5: 1.6 Vectors and Vector-Valued Functions
Green’s Theorem
Green’s Theorem (for Volume)
6: 37.19 Other Orthogonal Polynomials of d Variables
37.19.3 f , g w κ = 𝕊 d 1 f ( ξ ) g ( ξ ) w κ ( ξ ) d σ ,
37.19.7 f , g = 𝔹 d s f ( 𝐱 ) s g ( 𝐱 ) d 𝐱 + k = 0 s 2 1 𝕊 d 1 Δ k f ( ξ ) Δ k g ( ξ ) d σ ( ξ ) ,
7: 21.2 Definitions
21.2.1 θ ( 𝐳 | 𝛀 ) = 𝐧 g e 2 π i ( 1 2 𝐧 𝛀 𝐧 + 𝐧 𝐳 ) .
8: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
Example 1: In one and two dimensions any q ( x ) with a ‘Dip, or Well’ has a partly discrete spectrum
Suppose that X is the whole real line in one dimension, and that q ( x ) , in (1.18.28) has (non-oscillatory) limits of 0 at both ± , and thus a continuous spectrum on 𝝈 0 . … … Put n + = dim N z ( z > 0 ) and n = dim N z ( z < 0 ), the deficiency indices for T . … Thus N z has dimension 0, 1 or 2. …
9: 37.15 Orthogonal Polynomials on the Ball
37.15.7 R Y , k , n α ( r ξ ) = R k ( α , n 2 k + 1 2 d 1 ) ( 2 r 2 1 ) r n 2 k Y ( ξ ) , 0 k 1 2 n , Y n 2 k 0 , d , r 0 , ξ 𝕊 d 1 .
37.15.8 R Y 1 , k , n α , R Y 2 , k , n α α = ( α + n k + 1 2 d ) k ! ( 1 2 d ) n k ( α + n + 1 2 d ) ( α + 1 ) k ( α + 1 2 d + 1 ) n k Y 1 , Y 2 𝕊 d 1 , 0 k 1 2 n , Y 1 , Y 2 n 2 k 0 , d .
37.15.19 n 0 ( 𝐱 , 𝐲 ) = 2 n + d d 𝕊 d 1 C n ( 1 2 d ) ( 𝐱 , ξ ) C n ( 1 2 d ) ( 𝐲 , ξ ) d σ ( ξ ) , 𝐱 , 𝐲 𝔹 d .
10: 10.73 Physical Applications
Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …