dilogarithms
(0.000 seconds)
1—10 of 13 matching pages
1: 25.19 Tables
…
►
•
►
•
►
•
►
•
Fletcher et al. (1962, §22.1) lists many sources for earlier tables of for both real and complex . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of , and §22.17 lists tables for some Dirichlet -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.
2: 25.12 Polylogarithms
…
►
§25.12(i) Dilogarithms
►The notation was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): … ►Other notations and names for include (Kölbig et al. (1970)), Spence function (’t Hooft and Veltman (1979)), and (Maximon (2003)). ►In the complex plane has a branch point at . … ►For graphics see Figures 25.12.1 and 25.12.2, and for further properties see Maximon (2003), Kirillov (1995), Lewin (1981), Nielsen (1909), and Zagier (1989). …3: 25.18 Methods of Computation
…
►For the Hurwitz zeta function see Spanier and Oldham (1987, p. 653) and Coffey (2009).
►For dilogarithms and polylogarithms see Jacobs and Lambert (1972), Osácar et al. (1995), Spanier and Oldham (1987, pp. 231–232), and Zudilin (2007).
…
4: 25.20 Approximations
5: 25.1 Special Notation
…
►The main related functions are the Hurwitz zeta function , the dilogarithm
, the polylogarithm (also known as Jonquière’s function ), Lerch’s transcendent , and the Dirichlet -functions .
6: 25.21 Software
…
►
§25.21(v) Dilogarithms, Polylogarithms
…7: Bibliography Z
…
►
The Dilogarithm Function in Geometry and Number Theory.
In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.),
Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
…
8: 4.10 Integrals
…
9: Bibliography K
…
►
Dilogarithm identities.
Progr. Theoret. Phys. Suppl. (118), pp. 61–142.
…
►
Algorithm 327: Dilogarithm [S22].
Comm. ACM 11 (4), pp. 270–271.
…
10: Bibliography O
…
►
Numerical evaluation of the dilogarithm of complex argument.
Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
…