About the Project

derivatives

AdvancedHelp

(0.001 seconds)

11—20 of 277 matching pages

11: 31.12 Confluent Forms of Heun’s Equation
β–Ί
31.12.1 d 2 w d z 2 + ( γ z + δ z 1 + ϡ ) ⁒ d w d z + α ⁒ z q z ⁒ ( z 1 ) ⁒ w = 0 .
β–Ί
31.12.2 d 2 w d z 2 + ( δ z 2 + γ z + 1 ) ⁒ d w d z + α ⁒ z q z 2 ⁒ w = 0 .
β–Ί
31.12.3 d 2 w d z 2 ( γ z + δ + z ) ⁒ d w d z + α ⁒ z q z ⁒ w = 0 .
β–Ί
31.12.4 d 2 w d z 2 + ( γ + z ) ⁒ z ⁒ d w d z + ( α ⁒ z q ) ⁒ w = 0 .
12: 12.17 Physical Applications
β–Ί
12.17.2 2 = 2 x 2 + 2 y 2 + 2 z 2
β–Ί
12.17.4 1 ξ 2 + η 2 ⁒ ( 2 w ξ 2 + 2 w η 2 ) + 2 w ΢ 2 + k 2 ⁒ w = 0 .
β–Ί
d 2 U d ΞΎ 2 + ( Οƒ ⁒ ΞΎ 2 + Ξ» ) ⁒ U = 0 ,
β–Ί
d 2 V d Ξ· 2 + ( Οƒ ⁒ Ξ· 2 Ξ» ) ⁒ V = 0 ,
β–Ί
d 2 W d ΞΆ 2 + ( k 2 Οƒ ) ⁒ W = 0 ,
13: 12.15 Generalized Parabolic Cylinder Functions
β–Ί
12.15.1 d 2 w d z 2 + ( ν + λ 1 λ 2 ⁒ z λ ) ⁒ w = 0
14: 10.38 Derivatives with Respect to Order
§10.38 Derivatives with Respect to Order
β–Ί
10.38.2 K Ξ½ ⁑ ( z ) Ξ½ = 1 2 ⁒ Ο€ ⁒ csc ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( I Ξ½ ⁑ ( z ) Ξ½ I Ξ½ ⁑ ( z ) Ξ½ ) Ο€ ⁒ cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ K Ξ½ ⁑ ( z ) , Ξ½ β„€ .
β–ΊFor I Ξ½ ⁑ ( z ) / Ξ½ at Ξ½ = n combine (10.38.1), (10.38.2), and (10.38.4). … β–Ί
I ν ⁑ ( z ) ν | ν = 0 = K 0 ⁑ ( z ) ,
β–Ί
K ν ⁑ ( z ) ν | ν = 0 = 0 .
15: 19.4 Derivatives and Differential Equations
§19.4 Derivatives and Differential Equations
β–Ί
§19.4(i) Derivatives
β–Ί
d E ⁑ ( k ) d k = E ⁑ ( k ) K ⁑ ( k ) k ,
β–Ί
19.4.3 d 2 E ⁑ ( k ) d k 2 = 1 k ⁒ d K ⁑ ( k ) d k = k 2 ⁒ K ⁑ ( k ) E ⁑ ( k ) k 2 ⁒ k 2 ,
β–ΊLet D k = / k . …
16: 1.13 Differential Equations
β–ΊA solution becomes unique, for example, when w and d w / d z are prescribed at a point in D . … β–Ί
Elimination of First Derivative by Change of Dependent Variable
β–Ί
Elimination of First Derivative by Change of Independent Variable
β–ΊHere dots denote differentiations with respect to ΞΆ , and { z , ΞΆ } is the Schwarzian derivative: … β–Ί
Cayley’s Identity
17: 13.3 Recurrence Relations and Derivatives
§13.3 Recurrence Relations and Derivatives
β–Ί
§13.3(ii) Differentiation Formulas
β–Ί
13.3.22 d d z ⁑ U ⁑ ( a , b , z ) = a ⁒ U ⁑ ( a + 1 , b + 1 , z ) ,
β–Ί
13.3.23 d n d z n ⁑ U ⁑ ( a , b , z ) = ( 1 ) n ⁒ ( a ) n ⁒ U ⁑ ( a + n , b + n , z ) ,
β–Ί
13.3.29 ( z ⁒ d d z ⁑ z ) n = z n ⁒ d n d z n ⁑ z n , n = 1 , 2 , 3 , .
18: 10.15 Derivatives with Respect to Order
§10.15 Derivatives with Respect to Order
β–Ί
10.15.2 Y Ξ½ ⁑ ( z ) Ξ½ = cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( J Ξ½ ⁑ ( z ) Ξ½ Ο€ ⁒ Y Ξ½ ⁑ ( z ) ) csc ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ J Ξ½ ⁑ ( z ) Ξ½ Ο€ ⁒ J Ξ½ ⁑ ( z ) .
β–ΊFor J Ξ½ ⁑ ( z ) / Ξ½ at Ξ½ = n combine (10.2.4) and (10.15.3). … β–Ί
10.15.5 J Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = 0 = Ο€ 2 ⁒ Y 0 ⁑ ( z ) , Y Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = 0 = Ο€ 2 ⁒ J 0 ⁑ ( z ) .
β–Ί
19: 12.8 Recurrence Relations and Derivatives
§12.8 Recurrence Relations and Derivatives
β–Ί
§12.8(ii) Derivatives
β–Ί
12.8.9 d m d z m ⁑ ( e 1 4 ⁒ z 2 ⁒ U ⁑ ( a , z ) ) = ( 1 ) m ⁒ ( 1 2 + a ) m ⁒ e 1 4 ⁒ z 2 ⁒ U ⁑ ( a + m , z ) ,
β–Ί
12.8.10 d m d z m ⁑ ( e 1 4 ⁒ z 2 ⁒ U ⁑ ( a , z ) ) = ( 1 ) m ⁒ e 1 4 ⁒ z 2 ⁒ U ⁑ ( a m , z ) ,
β–Ί
12.8.11 d m d z m ⁑ ( e 1 4 ⁒ z 2 ⁒ V ⁑ ( a , z ) ) = e 1 4 ⁒ z 2 ⁒ V ⁑ ( a + m , z ) ,
20: 32.2 Differential Equations
β–Ί
32.2.1 d 2 w d z 2 = 6 ⁒ w 2 + z ,
β–Ί
32.2.2 d 2 w d z 2 = 2 ⁒ w 3 + z ⁒ w + α ,
β–Ί
32.2.7 d 2 w d z 2 = F ⁑ ( z , w , d w d z ) ,
β–Ίbe a nonlinear second-order differential equation in which F is a rational function of w and d w / d z , and is locally analytic in z , that is, analytic except for isolated singularities in β„‚ . … β–Ί
32.2.14 𝐼 = z ⁒ ( 1 z ) ⁒ d 2 d z 2 + ( 1 2 ⁒ z ) ⁒ d d z 1 4 .