About the Project

derivatives%20of%20the%20error%20function

AdvancedHelp

(0.006 seconds)

10 matching pages

1: 9.18 Tables
  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • Smirnov (1960) tabulates U 1 ( x , α ) , U 2 ( x , α ) , defined by (9.13.20), (9.13.21), and also U 1 ( x , α ) / x , U 2 ( x , α ) / x , for α = 1 , x = 6 ( .01 ) 10 to 5D or 5S, and also for α = ± 1 4 , ± 1 3 , ± 1 2 , ± 2 3 , ± 3 4 , 5 4 , 4 3 , 3 2 , 5 3 , 7 4 , 2, x = 0 ( .01 ) 6 ; 4D.

  • 2: 12.10 Uniform Asymptotic Expansions for Large Parameter
    The turning points can be included if expansions in terms of Airy functions are used instead of elementary functions2.8(iii)). …
    §12.10(vi) Modifications of Expansions in Elementary Functions
    The proof of the double asymptotic property then follows with the aid of error bounds; compare §10.41(iv). …
    Modified Expansions
    3: 10.75 Tables
    §10.75(ii) Bessel Functions and their Derivatives
    §10.75(iii) Zeros and Associated Values of the Bessel Functions, Hankel Functions, and their Derivatives
  • Abramowitz and Stegun (1964, Chapter 9) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (10D for n = 0 ), y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 ) 8 , m = 1 ( 1 ) 20 , 5D (8D for n = 0 ), J 0 ( j 0 , m x ) , m = 1 ( 1 ) 5 , x = 0 ( .02 ) 1 , 5D. Also included are the first 5 zeros of the functions x J 1 ( x ) λ J 0 ( x ) , J 1 ( x ) λ x J 0 ( x ) , J 0 ( x ) Y 0 ( λ x ) Y 0 ( x ) J 0 ( λ x ) , J 1 ( x ) Y 1 ( λ x ) Y 1 ( x ) J 1 ( λ x ) , J 1 ( x ) Y 0 ( λ x ) Y 1 ( x ) J 0 ( λ x ) for various values of λ and λ 1 in the interval [ 0 , 1 ] , 4–8D.

  • §10.75(ix) Spherical Bessel Functions, Modified Spherical Bessel Functions, and their Derivatives
    §10.75(xii) Zeros of Kelvin Functions and their Derivatives
    4: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry and C. J. Howls (1994) Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals. Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • J. M. Blair, C. A. Edwards, and J. H. Johnson (1976) Rational Chebyshev approximations for the inverse of the error function. Math. Comp. 30 (136), pp. 827–830.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 5: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • A. Strecok (1968) On the calculation of the inverse of the error function. Math. Comp. 22 (101), pp. 144–158.
  • 6: Bibliography G
  • W. Gautschi (1969) Algorithm 363: Complex error function. Comm. ACM 12 (11), pp. 635.
  • W. Gautschi (1961) Recursive computation of the repeated integrals of the error function. Math. Comp. 15 (75), pp. 227–232.
  • W. Gautschi (1970) Efficient computation of the complex error function. SIAM J. Numer. Anal. 7 (1), pp. 187–198.
  • M. Geller and E. W. Ng (1971) A table of integrals of the error function. II. Additions and corrections. J. Res. Nat. Bur. Standards Sect. B 75B, pp. 149–163.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • 7: Bibliography C
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • B. K. Choudhury (1995) The Riemann zeta-function and its derivatives. Proc. Roy. Soc. London Ser. A 450, pp. 477–499.
  • W. J. Cody (1969) Rational Chebyshev approximations for the error function. Math. Comp. 23 (107), pp. 631–637.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • A. Cruz and J. Sesma (1982) Zeros of the Hankel function of real order and of its derivative. Math. Comp. 39 (160), pp. 639–645.
  • 8: Bibliography V
  • A. L. Van Buren, R. V. Baier, and S. Hanish (1970) A Fortran computer program for calculating the oblate spheroidal radial functions of the first and second kind and their first derivatives. NRL Report No. 6959 Naval Res. Lab.  Washingtion, D.C..
  • A. L. Van Buren and J. E. Boisvert (2002) Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives. Quart. Appl. Math. 60 (3), pp. 589–599.
  • A. L. Van Buren and J. E. Boisvert (2004) Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives. Quart. Appl. Math. 62 (3), pp. 493–507.
  • C. G. van der Laan and N. M. Temme (1984) Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-Like Functions. CWI Tract, Vol. 10, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 9: 3.8 Nonlinear Equations
    For other efficient derivative-free methods, see Le (1985). … However, to guard against the accumulation of rounding errors, a final iteration for each zero should also be performed on the original polynomial p ( z ) . …
    §3.8(v) Zeros of Analytic Functions
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    10: Bibliography L
  • A. Laforgia and S. Sismondi (1988) Monotonicity results and inequalities for the gamma and error functions. J. Comput. Appl. Math. 23 (1), pp. 25–33.
  • A. Laforgia (1979) On the Zeros of the Derivative of Bessel Functions of Second Kind. Pubblicazioni Serie III [Publication Series III], Vol. 179, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • L. Lorch and P. Szegő (1995) Monotonicity of the zeros of the third derivative of Bessel functions. Methods Appl. Anal. 2 (1), pp. 103–111.
  • L. Lorch (1990) Monotonicity in terms of order of the zeros of the derivatives of Bessel functions. Proc. Amer. Math. Soc. 108 (2), pp. 387–389.