About the Project

definite integral

AdvancedHelp

(0.002 seconds)

21—30 of 32 matching pages

21: Errata
  • Equation (33.14.15)
    33.14.15 0 ϕ m , ( r ) ϕ n , ( r ) d r = δ m , n

    The definite integral, originally written as 0 ϕ n , 2 ( r ) d r = 1 , was clarified and rewritten as an orthogonality relation. This follows from (33.14.14) by combining it with Dunkl (2003, Theorem 2.2).

  • 22: 35.2 Laplace Transform
    35.2.1 g ( 𝐙 ) = 𝛀 etr ( 𝐙 𝐗 ) f ( 𝐗 ) d 𝐗 ,
    23: 35.5 Bessel Functions of Matrix Argument
    35.5.3 B ν ( 𝐓 ) = 𝛀 etr ( ( 𝐓 𝐗 + 𝐗 1 ) ) | 𝐗 | ν 1 2 ( m + 1 ) d 𝐗 , ν , 𝐓 𝛀 .
    35.5.5 𝟎 < 𝐗 < 𝐓 A ν 1 ( 𝐒 1 𝐗 ) | 𝐗 | ν 1 A ν 2 ( 𝐒 2 ( 𝐓 𝐗 ) ) | 𝐓 𝐗 | ν 2 d 𝐗 = | 𝐓 | ν 1 + ν 2 + 1 2 ( m + 1 ) A ν 1 + ν 2 + 1 2 ( m + 1 ) ( ( 𝐒 1 + 𝐒 2 ) 𝐓 ) , ν j , ( ν j ) > 1 , j = 1 , 2 ; 𝐒 1 , 𝐒 2 𝓢 ; 𝐓 𝛀 .
    35.5.7 𝛀 A ν 1 ( 𝐓 𝐗 ) B ν 2 ( 𝐒 𝐗 ) | 𝐗 | ν 1 d 𝐗 = 1 A ν 1 + ν 2 ( 𝟎 ) | 𝐒 | ν 2 | 𝐓 + 𝐒 | ( ν 1 + ν 2 + 1 2 ( m + 1 ) ) , ( ν 1 + ν 2 ) > 1 ; 𝐒 , 𝐓 𝛀 .
    24: 35.3 Multivariate Gamma and Beta Functions
    35.3.2 Γ m ( s 1 , , s m ) = 𝛀 etr ( 𝐗 ) | 𝐗 | s m 1 2 ( m + 1 ) j = 1 m 1 | ( 𝐗 ) j | s j s j + 1 d 𝐗 , s j , ( s j ) > 1 2 ( j 1 ) , j = 1 , , m .
    25: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    35.6.2 Ψ ( a ; b ; 𝐓 ) = 1 Γ m ( a ) 𝛀 etr ( 𝐓 𝐗 ) | 𝐗 | a 1 2 ( m + 1 ) | 𝐈 + 𝐗 | b a 1 2 ( m + 1 ) d 𝐗 , ( a ) > 1 2 ( m 1 ) , 𝐓 𝛀 .
    35.6.8 𝛀 | 𝐓 | c 1 2 ( m + 1 ) Ψ ( a ; b ; 𝐓 ) d 𝐓 = Γ m ( c ) Γ m ( a c ) Γ m ( c b + 1 2 ( m + 1 ) ) Γ m ( a ) Γ m ( a b + 1 2 ( m + 1 ) ) , ( a ) > ( c ) + 1 2 ( m 1 ) > m 1 , ( c b ) > 1 .
    26: 35.4 Partitions and Zonal Polynomials
    27: 19.31 Probability Distributions
    §19.31 Probability Distributions
    R G ( x , y , z ) and R F ( x , y , z ) occur as the expectation values, relative to a normal probability distribution in 2 or 3 , of the square root or reciprocal square root of a quadratic form. More generally, let 𝐀 ( = [ a r , s ] ) and 𝐁 ( = [ b r , s ] ) be real positive-definite matrices with n rows and n columns, and let λ 1 , , λ n be the eigenvalues of 𝐀 𝐁 1 . …
    19.31.2 n ( 𝐱 T 𝐀 𝐱 ) μ exp ( 𝐱 T 𝐁 𝐱 ) d x 1 d x n = π n / 2 Γ ( μ + 1 2 n ) det 𝐁 Γ ( 1 2 n ) R μ ( 1 2 , , 1 2 ; λ 1 , , λ n ) , μ > 1 2 n .
    §19.16(iii) shows that for n = 3 the incomplete cases of R F and R G occur when μ = 1 / 2 and μ = 1 / 2 , respectively, while their complete cases occur when n = 2 . …
    28: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    29: 18.34 Bessel Polynomials
    18.34.5_5 2 1 a Γ ( 1 a ) 0 y n ( x ; a ) y m ( x ; a ) x a 2 e 2 x 1 d x = 1 a 1 a 2 n n ! ( 2 a n ) n δ n , m , m , n = 0 , 1 , , N = ( 1 + a ) / 2 .
    The full system satisfies orthogonality with respect to a (not positive definite) moment functional; see Evans et al. (1993, (2.7)) for the simple expression of the moments μ n . …
    18.34.6 1 2 π i | z | = 1 z a 2 y n ( z ; a ) y m ( z ; a ) e 2 / z d z = ( 1 ) n + a 1 n !  2 a 1 ( n + a 2 ) ! ( 2 n + a 1 ) δ n , m , a = 1 , 2 , ,
    18.34.7_3 ϕ n ( x ; λ ) ϕ m ( x ; λ ) d x = Γ ( 2 λ n ) ( 2 λ 2 n 1 ) n ! δ n , m , m , n = 0 , 1 , , N = λ 3 2 .
    30: 1.5 Calculus of Two or More Variables
    and the second order term in (1.5.18) is positive definite (negative definite), that is, …
    Finite Integrals
    Infinite Integrals
    Double Integrals
    Triple Integrals