About the Project

cylindrical polar coordinates

AdvancedHelp

(0.001 seconds)

11—20 of 49 matching pages

11: 28.27 Addition Theorems
Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. …
12: Bibliography K
  • M. K. Kerimov and S. L. Skorokhodov (1986) On multiple zeros of derivatives of Bessel’s cylindrical functions. Dokl. Akad. Nauk SSSR 288 (2), pp. 285–288 (Russian).
  • M. K. Kerimov and S. L. Skorokhodov (1987) On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions. Zh. Vychisl. Mat. i Mat. Fiz. 27 (11), pp. 1628–1639, 1758.
  • M. K. Kerimov and S. L. Skorokhodov (1988) Multiple complex zeros of derivatives of the cylindrical Bessel functions. Dokl. Akad. Nauk SSSR 299 (3), pp. 614–618 (Russian).
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • 13: 30.14 Wave Equation in Oblate Spheroidal Coordinates
    §30.14 Wave Equation in Oblate Spheroidal Coordinates
    §30.14(i) Oblate Spheroidal Coordinates
    Oblate spheroidal coordinates ξ , η , ϕ are related to Cartesian coordinates x , y , z by …
    §30.14(ii) Metric Coefficients
    §30.14(iii) Laplacian
    14: 13.28 Physical Applications
    §13.28(i) Exact Solutions of the Wave Equation
    The reduced wave equation 2 w = k 2 w in paraboloidal coordinates, x = 2 ξ η cos ϕ , y = 2 ξ η sin ϕ , z = ξ η , can be solved via separation of variables w = f 1 ( ξ ) f 2 ( η ) e i p ϕ , where …
    15: 23.21 Physical Applications
    §23.21(iii) Ellipsoidal Coordinates
    Ellipsoidal coordinates ( ξ , η , ζ ) may be defined as the three roots ρ of the equation …where x , y , z are the corresponding Cartesian coordinates and e 1 , e 2 , e 3 are constants. The Laplacian operator 2 1.5(ii)) is given by
    23.21.2 ( η ζ ) ( ζ ξ ) ( ξ η ) 2 = ( ζ η ) f ( ξ ) f ( ξ ) ξ + ( ξ ζ ) f ( η ) f ( η ) η + ( η ξ ) f ( ζ ) f ( ζ ) ζ ,
    16: Bibliography M
  • W. Miller (1974) Lie theory and separation of variables. I: Parabolic cylinder coordinates. SIAM J. Math. Anal. 5 (4), pp. 626–643.
  • V. P. Modenov and A. V. Filonov (1986) Calculation of zeros of cylindrical functions and their derivatives. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. (2), pp. 63–64, 71 (Russian).
  • P. Moon and D. E. Spencer (1971) Field Theory Handbook. Including Coordinate Systems, Differential Equations and Their Solutions. 2nd edition, Springer-Verlag, Berlin.
  • 17: 30.13 Wave Equation in Prolate Spheroidal Coordinates
    §30.13 Wave Equation in Prolate Spheroidal Coordinates
    §30.13(i) Prolate Spheroidal Coordinates
    §30.13(ii) Metric Coefficients
    §30.13(iii) Laplacian
    18: 28.32 Mathematical Applications
    §28.32(i) Elliptical Coordinates and an Integral Relationship
    If the boundary conditions in a physical problem relate to the perimeter of an ellipse, then elliptical coordinates are convenient. …
    §28.32(ii) Paraboloidal Coordinates
    The general paraboloidal coordinate system is linked with Cartesian coordinates via …
    19: 18.39 Applications in the Physical Sciences
    where x is a spatial coordinate, m the mass of the particle with potential energy V ( x ) , = h / ( 2 π ) is the reduced Planck’s constant, and ( a , b ) a finite or infinite interval. … Now use spherical coordinates (1.5.16) with r instead of ρ , and assume the potential V to be radial. …By (1.5.17) the first term in (18.39.21), which is the quantum kinetic energy operator T e , can be written in spherical coordinates r , θ , ϕ as …
    20: 32.6 Hamiltonian Structure
    P I P VI  can be written as a Hamiltonian system …
    32.6.3 q = p ,
    32.6.4 p = 6 q 2 + z .
    32.6.5 σ = H I ( q , p , z ) ,
    32.6.7 q = σ ,