About the Project

cubic equation

AdvancedHelp

(0.002 seconds)

1—10 of 15 matching pages

1: 4.43 Cubic Equations
§4.43 Cubic Equations
2: 1.11 Zeros of Polynomials
Cubic Equations
For the roots α 1 , α 2 , α 3 , α 4 of g ( w ) = 0 and the roots θ 1 , θ 2 , θ 3 of the resolvent cubic equation
3: 23.22 Methods of Computation
  • (a)

    In the general case, given by c d 0 , we compute the roots α , β , γ , say, of the cubic equation 4 t 3 c t d = 0 ; see §1.11(iii). These roots are necessarily distinct and represent e 1 , e 2 , e 3 in some order.

    If c and d are real, and the discriminant is positive, that is c 3 27 d 2 > 0 , then e 1 , e 2 , e 3 can be identified via (23.5.1), and k 2 , k 2 obtained from (23.6.16).

    If c 3 27 d 2 < 0 , or c and d are not both real, then we label α , β , γ so that the triangle with vertices α , β , γ is positively oriented and [ α , γ ] is its longest side (chosen arbitrarily if there is more than one). In particular, if α , β , γ are collinear, then we label them so that β is on the line segment ( α , γ ) . In consequence, k 2 = ( β γ ) / ( α γ ) , k 2 = ( α β ) / ( α γ ) satisfy k 2 0 k 2 (with strict inequality unless α , β , γ are collinear); also | k 2 | , | k 2 | 1 .

    Finally, on taking the principal square roots of k 2 and k 2 we obtain values for k and k that lie in the 1st and 4th quadrants, respectively, and 2 ω 1 , 2 ω 3 are given by

    23.22.1 2 ω 1 M ( 1 , k ) = 2 i ω 3 M ( 1 , k ) = π 3 c ( 2 + k 2 k 2 ) ( k 2 k 2 ) d ( 1 k 2 k 2 ) ,

    where M denotes the arithmetic-geometric mean (see §§19.8(i) and 22.20(ii)). This process yields 2 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 2 possible choices of the square root.

  • 4: 23.3 Differential Equations
    The lattice roots satisfy the cubic equation
    5: 3.8 Nonlinear Equations
    The equation to be solved is … Sometimes the equation takes the form … If p = 2 , then the convergence is quadratic; if p = 3 , then the convergence is cubic, and so on. … The rule converges locally and is cubically convergent. …
    6: 23.21 Physical Applications
    The Weierstrass function plays a similar role for cubic potentials in canonical form g 3 + g 2 x 4 x 3 . …
    §23.21(ii) Nonlinear Evolution Equations
    Airault et al. (1977) applies the function to an integrable classical many-body problem, and relates the solutions to nonlinear partial differential equations. For applications to soliton solutions of the Korteweg–de Vries (KdV) equation see McKean and Moll (1999, p. 91), Deconinck and Segur (2000), and Walker (1996, §8.1). …
    7: Bibliography J
  • D. S. Jones, M. J. Plank, and B. D. Sleeman (2010) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Boca Raton, FL.
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • N. Joshi and A. V. Kitaev (2001) On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107 (3), pp. 253–291.
  • G. S. Joyce (1973) On the simple cubic lattice Green function. Philos. Trans. Roy. Soc. London Ser. A 273, pp. 583–610.
  • G. S. Joyce (1994) On the cubic lattice Green functions. Proc. Roy. Soc. London Ser. A 445, pp. 463–477.
  • 8: Bibliography R
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • È. Ya. Riekstynš (1991) Asymptotics and Bounds of the Roots of Equations (Russian). Zinatne, Riga.
  • 9: Bibliography C
  • R. Campbell (1955) Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique. Masson et Cie, Paris (French).
  • H. H. Chan (1998) On Ramanujan’s cubic transformation formula for F 1 2 ( 1 3 , 2 3 ; 1 ; z ) . Math. Proc. Cambridge Philos. Soc. 124 (2), pp. 193–204.
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • E. A. Coddington and N. Levinson (1955) Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • 10: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.