About the Project

cross ratio

AdvancedHelp

(0.003 seconds)

1—10 of 34 matching pages

1: 1.9 Calculus of a Complex Variable
The cross ratio of z 1 , z 2 , z 3 , z 4 { } is defined by …
2: 10.28 Wronskians and Cross-Products
§10.28 Wronskians and Cross-Products
10.28.1 𝒲 { I ν ( z ) , I ν ( z ) } = I ν ( z ) I ν 1 ( z ) I ν + 1 ( z ) I ν ( z ) = 2 sin ( ν π ) / ( π z ) ,
3: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.25 sinh z π 2 0 2 π cos t me ν ( t , h 2 ) me ν 2 m 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m + 1 i h α ν , m ( 0 ) D 0 ( ν , ν + 2 m + 1 , z ) ,
28.28.26 cosh z π 2 0 2 π sin t me ν ( t , h 2 ) me ν 2 m 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m + 1 i h α ν , m ( 1 ) D 0 ( ν , ν + 2 m + 1 , z ) ,
28.28.29 cosh z π 2 0 2 π sin t me ν ( t , h 2 ) me ν 2 m 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m + 1 i h α ν , m ( 0 ) D 1 ( ν , ν + 2 m + 1 , z ) ,
28.28.30 sinh z π 2 0 2 π cos t me ν ( t , h 2 ) me ν 2 m 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m i h α ν , m ( 1 ) D 1 ( ν , ν + 2 m + 1 , z ) ,
28.28.49 α ^ n , m ( c ) = 1 2 π 0 2 π cos t ce n ( t , h 2 ) ce m ( t , h 2 ) d t = ( 1 ) p + 1 2 i π ce n ( 0 , h 2 ) ce m ( 0 , h 2 ) h Dc 0 ( n , m , 0 ) .
4: 10.5 Wronskians and Cross-Products
§10.5 Wronskians and Cross-Products
10.5.1 𝒲 { J ν ( z ) , J ν ( z ) } = J ν + 1 ( z ) J ν ( z ) + J ν ( z ) J ν 1 ( z ) = 2 sin ( ν π ) / ( π z ) ,
10.5.2 𝒲 { J ν ( z ) , Y ν ( z ) } = J ν + 1 ( z ) Y ν ( z ) J ν ( z ) Y ν + 1 ( z ) = 2 / ( π z ) ,
10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
5: 10.6 Recurrence Relations and Derivatives
10.6.10 p ν s ν q ν r ν = 4 / ( π 2 a b ) .
6: 10.67 Asymptotic Expansions for Large Argument
10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
10.67.2 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) .
10.67.5 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 1 8 ) π ) ,
10.67.6 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 1 8 ) π ) .
§10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
7: 14.2 Differential Equations
14.2.11 P ν + 1 μ ( x ) Q ν μ ( x ) P ν μ ( x ) Q ν + 1 μ ( x ) = e μ π i Γ ( ν + μ + 1 ) Γ ( ν μ + 2 ) .
8: 4.2 Definitions
where k is the excess of the number of times the path in (4.2.1) crosses the negative real axis in the positive sense over the number of times in the negative sense. …
4.2.20 exp ( z + 2 π i ) = exp z .
4.2.23 ph ( exp z ) = z + 2 k π , k .
9: 13.4 Integral Representations
13.4.4 U ( a , b , z ) = 1 Γ ( a ) 0 e z t t a 1 ( 1 + t ) b a 1 d t , a > 0 , | ph z | < 1 2 π ,
13.4.5 U ( a , b , z ) = z 1 a Γ ( a ) Γ ( 1 + a b ) 0 U ( b a , b , t ) e t t a 1 t + z d t , | ph z | < π , a > max ( b 1 , 0 ) ,
13.4.9 𝐌 ( a , b , z ) = Γ ( 1 + a b ) 2 π i Γ ( a ) 0 ( 1 + ) e z t t a 1 ( t 1 ) b a 1 d t , b a 1 , 2 , 3 , , a > 0 .
At the point where the contour crosses the interval ( 1 , ) , t b and the 𝐅 1 2 function assume their principal values; compare §§15.1 and 15.2(i). …
13.4.13 𝐌 ( a , b , z ) = z 1 b 2 π i ( 0 + , 1 + ) e z t t b ( 1 1 t ) a d t , | ph z | < 1 2 π .
10: 8.19 Generalized Exponential Integral
When the path of integration excludes the origin and does not cross the negative real axis (8.19.2) defines the principal value of E p ( z ) , and unless indicated otherwise in the DLMF principal values are assumed. …
8.19.4 E p ( z ) = z p 1 e z Γ ( p ) 0 t p 1 e z t 1 + t d t , | ph z | < 1 2 π , p > 0 .
8.19.17 E p ( z ) = e z ( 1 z + p 1 + 1 z + p + 1 1 + 2 z + ) , | ph z | < π .
8.19.23 z E p 1 ( t ) d t = E p ( z ) , | ph z | < π ,