About the Project

cosecant function

AdvancedHelp

(0.001 seconds)

1—10 of 59 matching pages

1: 4.1 Special Notation
k , m , n integers.
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
2: 4.28 Definitions and Periodicity
4.28.5 csch z = 1 sinh z ,
4.28.11 csc ( i z ) = i csch z ,
3: 4.22 Infinite Products and Partial Fractions
4.22.4 csc 2 z = n = 1 ( z n π ) 2 ,
4.22.5 csc z = 1 z + 2 z n = 1 ( 1 ) n z 2 n 2 π 2 .
4: 4.36 Infinite Products and Partial Fractions
4.36.4 csch 2 z = n = 1 ( z n π i ) 2 ,
4.36.5 csch z = 1 z + 2 z n = 1 ( 1 ) n z 2 + n 2 π 2 .
5: 4.14 Definitions and Periodicity
4.14.5 csc z = 1 sin z ,
The functions tan z , csc z , sec z , and cot z are meromorphic, and the locations of their zeros and poles follow from (4.14.4) to (4.14.7). …
6: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.5: csch x and sech x . Magnify
See accompanying text
Figure 4.29.6: Principal values of arccsch x and arcsech x . … Magnify
§4.29(ii) Complex Arguments
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
7: 4.16 Elementary Properties
§4.16 Elementary Properties
Table 4.16.1: Signs of the trigonometric functions in the four quadrants.
Quadrant sin θ , csc θ cos θ , sec θ tan θ , cot θ
Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
8: 4.18 Inequalities
4.18.7 | csc z | csch | y | ,
9: 4.20 Derivatives and Differential Equations
4.20.4 d d z csc z = csc z cot z ,
4.20.6 d d z cot z = csc 2 z ,
10: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,