About the Project

contour integrals

AdvancedHelp

(0.003 seconds)

11—20 of 53 matching pages

11: 2.4 Contour Integrals
§2.4 Contour Integrals
Let 𝒫 denote the path for the contour integral
2.4.10 I ( z ) = a b e z p ( t ) q ( t ) d t ,
2.4.14 I ( z ) = t 0 b e z p ( t ) q ( t ) d t t 0 a e z p ( t ) q ( t ) d t ,
and assigning an appropriate value to c to modify the contour, the approximating integral is reducible to an Airy function or a Scorer function (§§9.2, 9.12). …
12: 13.4 Integral Representations
§13.4(ii) Contour Integrals
13: 9.17 Methods of Computation
In the first method the integration path for the contour integral (9.5.4) is deformed to coincide with paths of steepest descent (§2.4(iv)). …
14: 14.25 Integral Representations
For corresponding contour integrals, with less restrictions on μ and ν , see Olver (1997b, pp. 174–179), and for further integral representations see Magnus et al. (1966, §4.6.1).
15: 18.10 Integral Representations
§18.10(iii) Contour Integral Representations
Table 18.10.1 gives contour integral representations of the form
18.10.8 p n ( x ) = g 0 ( x ) 2 π i C ( g 1 ( z , x ) ) n g 2 ( z , x ) ( z c ) 1 d z
Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
16: 25.5 Integral Representations
§25.5(iii) Contour Integrals
25.5.20 ζ ( s ) = Γ ( 1 s ) 2 π i ( 0 + ) z s 1 e z 1 d z , s 1 , 2 , ,
25.5.21 ζ ( s ) = Γ ( 1 s ) 2 π i ( 1 2 1 s ) ( 0 + ) z s 1 e z + 1 d z , s 1 , 2 , .
17: 10.32 Integral Representations
§10.32(ii) Contour Integrals
18: 10.9 Integral Representations
§10.9(ii) Contour Integrals
H ν ( 2 ) ( z ) = 1 π i π i e z sinh t ν t d t .
19: 3.5 Quadrature
§3.5(viii) Complex Gauss Quadrature
§3.5(ix) Other Contour Integrals
A frequent problem with contour integrals is heavy cancellation, which occurs especially when the value of the integral is exponentially small compared with the maximum absolute value of the integrand. … Other contour integrals occur in standard integral transforms or their inverses, for example, Hankel transforms (§10.22(v)), Kontorovich–Lebedev transforms (§10.43(v)), and Mellin transforms (§1.14(iv)). …
20: 1.10 Functions of a Complex Variable
1.10.8 1 2 π i C f ( z ) d z = sum of the residues of  f ( z )  within  C .
1.10.9 N P = 1 2 π i C f ( z ) f ( z ) d z = 1 2 π Δ C ( ph f ( z ) ) ,
1.10.10 1 2 π i C z f ( z ) f ( z ) d z = (sum of locations of zeros) (sum of locations of poles) ,
§1.10(viii) Functions Defined by Contour Integrals
The recurrence relation for C n ( λ ) ( x ) in §18.9(i) follows from ( 1 2 x z + z 2 ) z F ( x , λ ; z ) = 2 λ ( x z ) F ( x , λ ; z ) , and the contour integral representation for C n ( λ ) ( x ) in §18.10(iii) is just (1.10.27).