About the Project

continued-fraction equations

AdvancedHelp

(0.002 seconds)

11—20 of 39 matching pages

11: 3.6 Linear Difference Equations
See also Gautschi (1967) and Gil et al. (2007a, Chapter 4) for the computation of recessive solutions via continued fractions. …
12: 5.10 Continued Fractions
§5.10 Continued Fractions
5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
13: 14.32 Methods of Computation
  • Numerical integration (§3.7) of the defining differential equations (14.2.2), (14.20.1), and (14.21.1).

  • Evaluation (§3.10) of the continued fractions given in §14.14. See Gil and Segura (2000).

  • 14: Bibliography C
  • B. W. Char (1980) On Stieltjes’ continued fraction for the gamma function. Math. Comp. 34 (150), pp. 547–551.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period. National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B. Jones, and C. Bonan-Hamada (2007) Handbook of Continued Fractions for Special Functions. Kluwer Academic Publishers Group, Dordrecht.
  • A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones (2008) Handbook of Continued Fractions for Special Functions. Springer, New York.
  • 15: Bibliography B
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • G. Blanch (1964) Numerical evaluation of continued fractions. SIAM Rev. 6 (4), pp. 383–421.
  • J. M. Borwein and I. J. Zucker (1992) Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12 (4), pp. 519–526.
  • 16: Errata
    The specific updates to Chapter 18 include some results for general orthogonal polynomials including quadratic transformations, uniqueness of orthogonality measure and completeness, moments, continued fractions, and some special classes of orthogonal polynomials. …
  • Subsections 1.15(vi), 1.15(vii), 2.6(iii)

    A number of changes were made with regard to fractional integrals and derivatives. In §1.15(vi) a reference to Miller and Ross (1993) was added, the fractional integral operator of order α was more precisely identified as the Riemann-Liouville fractional integral operator of order α , and a paragraph was added below (1.15.50) to generalize (1.15.47). In §1.15(vii) the sentence defining the fractional derivative was clarified. In §2.6(iii) the identification of the Riemann-Liouville fractional integral operator was made consistent with §1.15(vi).

  • Equation (15.6.8)

    In §15.6, it was noted that (15.6.8) can be rewritten as a fractional integral.

  • Subsection 13.29(v)

    A new Subsection Continued Fractions, has been added to cover computation of confluent hypergeometric functions by continued fractions.

  • Subsection 15.19(v)

    A new Subsection Continued Fractions, has been added to cover computation of the Gauss hypergeometric functions by continued fractions.

  • 17: 5.15 Polygamma Functions
    5.15.9 ψ ( n ) ( z ) ( 1 ) n 1 ( ( n 1 ) ! z n + n ! 2 z n + 1 + k = 1 ( 2 k + n 1 ) ! ( 2 k ) ! B 2 k z 2 k + n ) .
    For B 2 k see §24.2(i). For continued fractions for ψ ( z ) and ψ ′′ ( z ) see Cuyt et al. (2008, pp. 231–238).
    18: 10.74 Methods of Computation
    §10.74(ii) Differential Equations
    A comprehensive and powerful approach is to integrate the differential equations (10.2.1) and (10.25.1) by direct numerical methods. … For further information, including parallel methods for solving the differential equations, see Lozier and Olver (1993). …
    §10.74(v) Continued Fractions
    For applications of the continued-fraction expansions (10.10.1), (10.10.2), (10.33.1), and (10.33.2) to the computation of Bessel functions and modified Bessel functions see Gargantini and Henrici (1967), Amos (1974), Gautschi and Slavik (1978), Tretter and Walster (1980), Thompson and Barnett (1986), and Cuyt et al. (2008). …
    19: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • V. I. Gromak and N. A. Lukaševič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • 20: Bibliography S
  • J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis (1997) A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • A. J. Stone and C. P. Wood (1980) Root-rational-fraction package for exact calculation of vector-coupling coefficients. Comput. Phys. Comm. 21 (2), pp. 195–205.